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1 Function Reference

Signal Sources
commsrc.pattern Construct pattern generator object
randerr Generate bit error patterns
randint Generate matrix of uniformly

distributed random integers
randsrc Generate random matrix using

prescribed alphabet
wgn Generate white Gaussian noise

Performance Evaluation
berawgn Bit error rate (BER) for uncoded

AWGN channels
bercoding Bit error rate (BER) for coded AWGN

channels
berconfint Bit error rate (BER) and confidence

interval of Monte Carlo simulation
berfading Bit error rate (BER) for Rayleigh

and Rician fading channels
berfit Fit curve to nonsmooth empirical bit

error rate (BER) data
bersync Bit error rate (BER) for imperfect

synchronization
biterr Compute number of bit errors and

bit error rate (BER)
commscope Package of communications scope

classes
commscope.eyediagram Eye diagram analysis
distspec Compute distance spectrum of

convolutional code
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Source Coding

eyediagram Generate eye diagram
EyeScope Launches eye diagram scope for eye

diagram object H
noisebw Equivalent noise bandwidth of filter
scatterplot Generate scatter plot
semianalytic Calculate bit error rate (BER) using

semianalytic technique
symerr Compute number of symbol errors

and symbol error rate

Source Coding
arithdeco Decode binary code using arithmetic

decoding
arithenco Encode sequence of symbols using

arithmetic coding
compand Source code mu-law or A-law

compressor or expander
dpcmdeco Decode using differential pulse code

modulation
dpcmenco Encode using differential pulse code

modulation
dpcmopt Optimize differential pulse code

modulation parameters
huffmandeco Huffman decoder
huffmandict Generate Huffman code dictionary

for source with known probability
model

huffmanenco Huffman encoder
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1 Function Reference

lloyds Optimize quantization parameters
using Lloyd algorithm

quantiz Produce quantization index and
quantized output value

Error-Control Coding
bchdec BCH decoder
bchenc BCH encoder
bchgenpoly Generator polynomial of BCH code
bchnumerr Number of correctable errors for

BCH code
convenc Convolutionally encode binary data
cyclgen Produce parity-check and generator

matrices for cyclic code
cyclpoly Produce generator polynomials for

cyclic code
decode Block decoder
dvbs2ldpc Low-density parity-check codes from

DVB-S.2 standard
encode Block encoder
fec.bchdec Construct BCH decoder object
fec.bchenc Construct BCH encoder object
fec.ldpcdec Construct LDPC decoder object
fec.ldpcenc Construct LDPC encoder object
fec.rsdec Construct Reed-Solomon decoder

object
fec.rsenc Construct Reed-Solomon encoder

object
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Interleaving/Deinterleaving

gen2par Convert between parity-check and
generator matrices

gfweight Calculate minimum distance of
linear block code

hammgen Produce parity-check and generator
matrices for Hamming code

rsdec Reed-Solomon decoder
rsdecof Decode ASCII file encoded using

Reed-Solomon code
rsenc Reed-Solomon encoder
rsencof Encode ASCII file using

Reed-Solomon code
rsgenpoly Generator polynomial of

Reed-Solomon code
syndtable Produce syndrome decoding table
vitdec Convolutionally decode binary data

using Viterbi algorithm

Interleaving/Deinterleaving
algdeintrlv Restore ordering of symbols using

algebraically derived permutation
table

algintrlv Reorder symbols using algebraically
derived permutation table

convdeintrlv Restore ordering of symbols using
shift registers

convintrlv Permute symbols using shift
registers

deintrlv Restore ordering of symbols
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heldeintrlv Restore ordering of symbols
permuted using helintrlv

helintrlv Permute symbols using helical array
helscandeintrlv Restore ordering of symbols in

helical pattern
helscanintrlv Reorder symbols in helical pattern
intrlv Reorder sequence of symbols
matdeintrlv Restore ordering of symbols by filling

matrix by columns and emptying it
by rows

matintrlv Reorder symbols by filling matrix by
rows and emptying it by columns

muxdeintrlv Restore ordering of symbols using
specified shift registers

muxintrlv Permute symbols using shift
registers with specified delays

randdeintrlv Restore ordering of symbols using
random permutation

randintrlv Reorder symbols using random
permutation

Analog Modulation/Demodulation
amdemod Amplitude demodulation
ammod Amplitude modulation
fmdemod Frequency demodulation
fmmod Frequency modulation
pmdemod Phase demodulation
pmmod Phase modulation
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Digital Modulation/Demodulation

ssbdemod Single sideband amplitude
demodulation

ssbmod Single sideband amplitude
modulation

Digital Modulation/Demodulation
dpskdemod Differential phase shift keying

demodulation
dpskmod Differential phase shift keying

modulation
fskdemod Frequency shift keying demodulation
fskmod Frequency shift keying modulation
genqamdemod General quadrature amplitude

demodulation
genqammod General quadrature amplitude

modulation
modem Package of modem classes
modem.dpskdemod Construct DPSK demodulator object
modem.dpskmod Construct DPSK modulator object
modem.genqamdemod Construct General QAM

demodulator object
modem.genqammod Construct General QAM modulator

object
modem.mskdemod Construct MSK demodulator object
modem.mskmod Construct MSK modulator object
modem.oqpskdemod Construct OQPSK demodulator

object
modem.oqpskmod Construct OQPSK modulator object
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modem.pamdemod Construct PAM demodulator object
modem.pammod Construct PAM modulator object
modem.pskdemod Construct PSK demodulator object
modem.pskmod Construct PSK modulator object
modem.qamdemod Construct QAM demodulator object
modem.qammod Construct QAM modulator object
modnorm Scaling factor for normalizing

modulation output
mskdemod Minimum shift keying demodulation
mskmod Minimum shift keying modulation
oqpskdemod Offset quadrature phase shift keying

demodulation
oqpskmod Offset quadrature phase shift keying

modulation
pamdemod Pulse amplitude demodulation
pammod Pulse amplitude modulation
pskdemod Phase shift keying demodulation
pskmod Phase shift keying modulation
qamdemod Quadrature amplitude demodulation
qammod Quadrature amplitude modulation

Pulse Shaping
intdump Integrate and dump
rcosflt Filter input signal using raised

cosine filter
rectpulse Rectangular pulse shaping
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Filters

Filters
hank2sys Convert Hankel matrix to linear

system model
hilbiir Design Hilbert transform IIR filter
rcosine Design raised cosine filter

Lower-Level Filters

rcosfir Design raised cosine finite impulse
response (FIR) filter

rcosiir Design raised cosine infinite impulse
response (IIR) filter

Channels
awgn Add white Gaussian noise to signal
bsc Model binary symmetric channel
doppler Package of Doppler classes
doppler.ajakes Construct asymmetrical Doppler

spectrum object
doppler.bigaussian Construct bi-Gaussian Doppler

spectrum object
doppler.flat Construct flat Doppler spectrum

object
doppler.gaussian Construct Gaussian Doppler

spectrum object
doppler.jakes Construct Jakes Doppler spectrum

object
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doppler.rjakes Construct restricted Jakes Doppler
spectrum object

doppler.rounded Construct rounded Doppler spectrum
object

filter (channel) Filter signal with channel object
plot (channel) Plot channel characteristics with

channel visualization tool
rayleighchan Construct Rayleigh fading channel

object
reset (channel) Reset channel object
ricianchan Construct Rician fading channel

object
stdchan Construct channel object from set of

standardized channel models

Equalizers
cma Construct constant modulus

algorithm (CMA) object
dfe Construct decision-feedback

equalizer object
equalize Equalize signal using equalizer

object
lineareq Construct linear equalizer object
lms Construct least mean square (LMS)

adaptive algorithm object
mlseeq Equalize linearly modulated signal

using Viterbi algorithm
normlms Construct normalized least mean

square (LMS) adaptive algorithm
object
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Galois Field

reset (equalizer) Reset equalizer object
rls Construct recursive least squares

(RLS) adaptive algorithm object
signlms Construct signed least mean square

(LMS) adaptive algorithm object
varlms Construct variable-step-size least

mean square (LMS) adaptive
algorithm object

Galois Field
convmtx Convolution matrix of Galois field

vector
cosets Produce cyclotomic cosets for Galois

field
dftmtx Discrete Fourier transform matrix

in Galois field
fft Discrete Fourier transform
filter (gf) 1-D digital filter over Galois field
gf Create Galois field array
gftable Generate file to accelerate Galois

field computations
ifft Inverse discrete Fourier transform
isprimitive True for primitive polynomial for

Galois field
log Logarithm in Galois field
minpol Find minimal polynomial of Galois

field element
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1 Function Reference

mldivide Matrix left division \ of Galois arrays
primpoly Find primitive polynomials for

Galois field

MATLAB Functions and Operators

+ - Addition and subtraction of Galois arrays
* / \ Matrix multiplication and division of Galois arrays
.* ./ .\ Elementwise multiplication and division of Galois

arrays
^ Matrix exponentiation of Galois array
.^ Elementwise exponentiation of Galois array
' .' Transpose of Galois array
==, ~= Relational operators for Galois arrays
all True if all elements of a Galois vector are nonzero
any True if any element of a Galois vector is nonzero
conv Convolution of Galois vectors
deconv Deconvolution and polynomial division
det Determinant of square Galois matrix
diag Diagonal Galois matrices and diagonals of a Galois

matrix
inv Inverse of Galois matrix
isempty True for empty Galois arrays
length Length of Galois vector
lu Lower-upper triangular factorization of Galois

array
polyval Evaluate polynomial in Galois field
rank Rank of a Galois array
reshape Reshape Galois array
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Galois Fields of Odd Characteristic

roots Find polynomial roots across a Galois field
size Size of Galois array
tril Extract lower triangular part of Galois array
triu Extract upper triangular part of Galois array

Galois Fields of Odd Characteristic
gfadd Add polynomials over Galois field
gfconv Multiply polynomials over Galois

field
gfcosets Produce cyclotomic cosets for Galois

field
gfdeconv Divide polynomials over Galois field
gfdiv Divide elements of Galois field
gffilter Filter data using polynomials over

prime Galois field
gflineq Find particular solution of Ax = b

over prime Galois field
gfminpol Find minimal polynomial of Galois

field element
gfmul Multiply elements of Galois field
gfpretty Polynomial in traditional format
gfprimck Check whether polynomial over

Galois field is primitive
gfprimdf Provide default primitive

polynomials for Galois field
gfprimfd Find primitive polynomials for

Galois field
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gfrank Compute rank of matrix over Galois
field

gfrepcov Convert one binary polynomial
representation to another

gfroots Find roots of polynomial over prime
Galois field

gfsub Subtract polynomials over Galois
field

gftrunc Minimize length of polynomial
representation

gftuple Simplify or convert Galois field
element formatting

Utilities
alignsignals Align two signals by delaying

earliest signal
bi2de Convert binary vectors to decimal

numbers
bin2gray Convert positive integers into

corresponding Gray-encoded
integers

de2bi Convert decimal numbers to binary
vectors

finddelay Estimate delay(s) between signals
gray2bin Convert Gray-encoded positive

integers to corresponding
Gray-decoded integers

iscatastrophic True for trellis corresponding to
catastrophic convolutional code

istrellis True for valid trellis structure
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GUI

marcumq Generalized Marcum Q function
mask2shift Convert mask vector to shift for shift

register configuration
oct2dec Convert octal to decimal numbers
poly2trellis Convert convolutional code

polynomials to trellis description
qfunc Q function
qfuncinv Inverse Q function
seqgen Sequence generator package
seqgen.pn Construct default PN sequence

generator object
shift2mask Convert shift to mask vector for shift

register configuration
vec2mat Convert vector into matrix

MATLAB Utilities

erf Error function

erfc Complementary error function

GUI
bertool Open bit error rate analysis GUI

(BERTool)
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algdeintrlv

Purpose Restore ordering of symbols using algebraically derived permutation
table

Syntax deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
restores the original ordering of the elements in data using
a permutation table that is algebraically derived using the
Takeshita-Costello method. num is the number of elements in data if
data is a vector, or the number of rows of data if data is a matrix with
multiple columns. In the Takeshita-Costello method, num must be a
power of 2. The multiplicative factor, k, must be an odd integer less
than num, and the cyclic shift, h, must be a nonnegative integer less than
num. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the
Welch-Costas method. In the Welch-Costas method, num+1 must be a
prime number. alph is an integer between 1 and num that represents a
primitive element of the finite field GF(num+1).

To use this function as an inverse of the algintrlv function, use the
same inputs in both functions, except for the data input. In that case,
the two functions are inverses in the sense that applying algintrlv
followed by algdeintrlv leaves data unchanged.

Examples The code below uses the Takeshita-Costello method of algintrlv and
algdeintrlv.

num = 16; % Power of 2
ncols = 3; % Number of columns of data to interleave
data = rand(num,ncols); % Random data to interleave
k = 3;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h);
deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h);
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algdeintrlv

See Also algintrlv, “Interleaving”

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16–21, 1998. p. 419.
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algintrlv

Purpose Reorder symbols using algebraically derived permutation table

Syntax intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
intrlvd = algintrlv(data,num,'welch-costas',alph)

Description intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
rearranges the elements in data using a permutation table that is
algebraically derived using the Takeshita-Costello method. num is
the number of elements in data if data is a vector, or the number
of rows of data if data is a matrix with multiple columns. In the
Takeshita-Costello method, nummust be a power of 2. The multiplicative
factor, k, must be an odd integer less than num, and the cyclic shift,
h, must be a nonnegative integer less than num. If data is a matrix
with multiple rows and columns, the function processes the columns
independently.

intrlvd = algintrlv(data,num,'welch-costas',alph) uses the
Welch-Costas method. In the Welch-Costas method, num+1 must be a
prime number. alph is an integer between 1 and num that represents a
primitive element of the finite field GF(num+1). This means that every
nonzero element of GF(num+1) can be expressed as alph raised to some
integer power.

Examples This example illustrates how to use the Welch-Costas method of
algebraic interleaving.

1 Define num and the data to interleave.

num = 10; % Integer such that num+1 is prime
ncols = 3; % Number of columns of data to interleave
data = randint(num,ncols,num); % Random data to interleave

2 Find primitive polynomials of the finite field GF(num+1). The
gfprimfd function represents each primitive polynomial as a row
containing the coefficients in order of ascending powers.

pr = gfprimfd(1,'all',num+1) % Primitive polynomials of GF(num+1)
pr =
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algintrlv

3 1
4 1
5 1
9 1

3 Notice from the output that pr has two columns and that the
second column consists solely of 1s. In other words, each primitive
polynomial is a monic degree-one polynomial. This is because
num+1 is prime. As a result, to find the primitive element that is a
root of each primitive polynomial, find a root of the polynomial by
subtracting the first column of pr from num+1.

primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)
primel =

8
7
6
2

4 Now define alph as one of the elements of primel and use algintrlv.

alph = primel(1); % Choose one primitive element.
intrlvd = algintrlv(data,num,'Welch-Costas',alph); % Interleave.

Algorithm • A Takeshita-Costello interleaver uses a length-num cycle vector whose
nth element is mod(k*(n-1)*n/2, num) for integers n between 1 and
num. The function creates a permutation vector by listing, for each
element of the cycle vector in ascending order, one plus the element’s
successor. The interleaver’s actual permutation table is the result
of shifting the elements of the permutation vector left by h. (The
function performs all computations on numbers and indices modulo
num.)

• A Welch-Costas interleaver uses a permutation that maps an integer
K to mod(AK,num+1)-1.
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See Also algdeintrlv, “Interleaving”

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16–21, 1998. p. 419.
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alignsignals

Purpose Align two signals by delaying earliest signal

Syntax [Xa Ya] = alignsignals(X,Y)
[Xa Ya] = alignsignals(X,Y,MAXLAG)
[Xa Ya] = alignsignals(X,Y,MAXLAG,'truncate')
[Xa Ya D] = alignsignals(...)

Description [Xa Ya] = alignsignals(X,Y), where X and Y are row or column
vectors of length LX and LY, respectively, aligns the two vectors by
estimating the delay D between the two. If Y is delayed with respect to
X, D is positive, and X is delayed by D samples. If Y is advanced with
respect to X, D is negative, and Y is delayed by -D samples. The aligned
signals Xa and Ya are returned. Delays in X and Y can be introduced by
pre-pending zeros.

[Xa Ya] = alignsignals(X,Y,MAXLAG) uses MAXLAG as the maximum
window size used to find the estimated delay D between X and Y. MAXLAG
is an integer-valued scalar. By default, MAXLAG is equal to MAX(LX,
LY)-1. If MAXLAG is input as [], it is replaced by the default value. If
MAXLAG is negative, it is replaced by its absolute value. If MAXLAG is not
integer-valued, or is complex, Inf, or NaN, then alignsignals returns
an error.

[Xa Ya] = alignsignals(X,Y,MAXLAG,'truncate') keeps the lengths
of Xa and Ya the same as those of X and Y, respectively. If D is positive,
D zeros are pre-pended to X, and the last D samples of X are truncated.
If D is negative, -D zeros are pre-pended to Y, and the last -D samples
of Y are truncated. Note: If D LX≥ , Xa will consist of LX zeros, and
all samples of X are lost. Similarly, if − ≥D LY , Ya will consist of LY
zeros, and all samples of Y are lost. To avoid assigning a specific value
to MAXLAG when using the 'truncate' option, set MAXLAG to [].

[Xa Ya D] = alignsignals(...) returns the estimated delay D.
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alignsignals

Theory
and
Algorithm

The theory on delay estimation can be found in the specification of the
finddelay function (see “Theory and Algorithm” on page 2-243).

The alignsignals function simply uses the estimated delay to delay the
earliest signal such that the two signals have the same starting point.

As specified for the finddelay function, the pair of signals need not
be exact delayed copies of each other. However, the signals can be
successfully aligned only if there is sufficient correlation between them.

Examples The following illustrates how X is aligned when Y is delayed with respect
to X by two samples.

X = [1 2 3];
Y = [0 0 1 2 3];
MAXLAG = 2;
[Xa Ya D] = alignsignals(X, Y, MAXLAG)

The resulting values are:

Xa = [0 0 1 2 3]
Ya = [0 0 1 2 3]
D = 2

The following is a case where Y is advanced with respect to X by three
samples.

X = [0 0 0 1 2 3 0 0]';
Y = [1 2 3 0]';
[Xa Ya] = alignsignals(X, Y)

The resulting values are:

Xa = [0 0 0 1 2 3 0 0]'
Ya = [0 0 0 1 2 3 0]'

The following illustrates a signal Y that is aligned with respect to X
but is noisy.
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alignsignals

X = [0 0 1 2 3 0];
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];
[Xa Ya D] = alignsignals(X, Y)

The resulting values are:

Xa = [0 0 1 2 3 0]
Ya = [0.02 0.12 1.08 2.21 2.95 -0.09];
D = 0

The following shows that when Y is a periodic repetition of X, the
smallest possible delay is returned.

X = [0 1 2 3];
Y = [1 2 3 0 0 0 0 1 2 3 0 0];
[Xa Ya D] = alignsignals(X, Y)

The resulting values are:

Xa = [0 1 2 3];
Ya = [0 1 2 3 0 0 0 0 1 2 3 0 0];
D = -1

Here is an example of alignsignals using the 'truncate' option.

X = [1 2 3];
Y = [0 0 1 2 3];
[Xa Ya D] = alignsignals(X, Y, [], 'truncate')

The resulting values are:

Xa = [0 0 1];
Ya = [0 0 1 2 3];
D = 2

In the case where using the 'truncate' option ends up truncating all
the original data of X, a warning will be issued. The following example
makes MATLAB issue such a warning.
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alignsignals

X = [1 2 3];
Y = [0 0 0 0 1 2 3];
[Xa Ya D] = alignsignals(X, Y, [], 'truncate')

See Also finddelay
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Purpose Amplitude demodulation

Syntax z = amdemod(y,Fc,Fs)
z = amdemod(y,Fc,Fs,ini_phase)
z = amdemod(y,Fc,Fs,ini_phase,carramp)
z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den)

Description z = amdemod(y,Fc,Fs) demodulates the amplitude modulated signal y
from a carrier signal with frequency Fc (Hz). The carrier signal and y
have sample frequency Fs (Hz). The modulated signal y has zero initial
phase and zero carrier amplitude, so it represents suppressed carrier
modulation. The demodulation process uses the lowpass filter specified
by [num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW
is the bandwidth of the original signal that was modulated.

z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal that
was created via transmitted carrier modulation instead of suppressed
carrier modulation. carramp is the carrier amplitude of the modulated
signal.

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den) specifies
the numerator and denominator of the lowpass filter used in the
demodulation.

Examples The code below illustrates the use of a nondefault filter.

t = .01;
Fc = 10000; Fs = 80000;
t = [0:1/Fs:0.01]';
s = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Original signal
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[num,den] = butter(10,Fc*2/Fs); % Lowpass filter

y1 = ammod(s,Fc,Fs); % Modulate.
s1 = amdemod(y1,Fc,Fs,0,0,num,den); % Demodulate.

See Also ammod, ssbdemod, fmdemod, pmdemod, “Modulation”
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Purpose Amplitude modulation

Syntax y = ammod(x,Fc,Fs)
y = ammod(x,Fc,Fs,ini_phase)
y = ammod(x,Fc,Fs,ini_phase,carramp)

Description y = ammod(x,Fc,Fs) uses the message signal x to modulate a carrier
signal with frequency Fc (Hz) using amplitude modulation. The carrier
signal and x have sample frequency Fs (Hz). The modulated signal
has zero initial phase and zero carrier amplitude, so the result is
suppressed-carrier modulation.

Note The x, Fc, and Fs input arguments must satisfy Fs > 2(Fc + BW),
where BW is the bandwidth of the modulating signal x.

y = ammod(x,Fc,Fs,ini_phase) specifies the initial phase in the
modulated signal y in radians.

y = ammod(x,Fc,Fs,ini_phase,carramp) performs
transmitted-carrier modulation instead of suppressed-carrier
modulation. The carrier amplitude is carramp.

Examples The example below compares double-sideband and single-sideband
amplitude modulation.

% Sample the signal 100 times per second, for 2 seconds.
Fs = 100;
t = [0:2*Fs+1]'/Fs;
Fc = 10; % Carrier frequency
x = sin(2*pi*t); % Sinusoidal signal

% Modulate x using single- and double-sideband AM.
ydouble = ammod(x,Fc,Fs);
ysingle = ssbmod(x,Fc,Fs);
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% Compute spectra of both modulated signals.
zdouble = fft(ydouble);
zdouble = abs(zdouble(1:length(zdouble)/2+1));
frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;
zsingle = fft(ysingle);
zsingle = abs(zsingle(1:length(zsingle)/2+1));
frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;

% Plot spectra of both modulated signals.
figure;
subplot(2,1,1); plot(frqdouble,zdouble);
title('Spectrum of double-sideband signal');
subplot(2,1,2); plot(frqsingle,zsingle);
title('Spectrum of single-sideband signal');

See Also amdemod, ssbmod, fmmod, pmmod, “Modulation”
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Purpose Decode binary code using arithmetic decoding

Syntax dseq = arithdeco(code,counts,len)

Description dseq = arithdeco(code,counts,len) decodes the binary arithmetic
code in the vector code to recover the corresponding sequence of len
symbols. The vector counts represents the source’s statistics by listing
the number of times each symbol of the source’s alphabet occurs in a
test data set. This function assumes that the data in code was produced
by the arithenco function.

Examples This example is similar to the example on the arithenco reference
page, except that it uses arithdeco to recover the original sequence.

counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq)); % Decode.
isequal(seq,dseq) % Check that dseq matches the original seq.

The output is

ans =

1

Algorithm This function uses the algorithm described in [1].

See Also arithenco, “Arithmetic Coding”

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.
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Purpose Encode sequence of symbols using arithmetic coding

Syntax code = arithenco(seq,counts)

Description code = arithenco(seq,counts) generates the binary arithmetic
code corresponding to the sequence of symbols specified in the vector
seq. The vector counts represents the source’s statistics by listing the
number of times each symbol of the source’s alphabet occurs in a test
data set.

Examples This example illustrates the compression that arithmetic coding can
accomplish in some situations. A source has a two-symbol alphabet and
produces a test data set in which 99% of the symbols are 1s. Encoding
1000 symbols from this source produces a code vector having many
fewer than 1000 elements. The actual number of elements in code
varies, depending on the particular random sequence contained in seq.

counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
s = size(code) % length of code is only 8.3% of length of seq.

The output is

s =

1 83

Algorithm This function uses the algorithm described in [1].

See Also arithdeco, “Arithmetic Coding”

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.
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Purpose Add white Gaussian noise to signal

Syntax y = awgn(x,snr)
y = awgn(x,snr,sigpower)
y = awgn(x,snr,'measured')
y = awgn(x,snr,sigpower,state)
y = awgn(x,snr,'measured',state)
y = awgn(...,powertype)

Description y = awgn(x,snr) adds white Gaussian noise to the vector signal x.
The scalar snr specifies the signal-to-noise ratio per sample, in dB. If
x is complex, awgn adds complex noise. This syntax assumes that the
power of x is 0 dBW.

y = awgn(x,snr,sigpower) is the same as the syntax above, except
that sigpower is the power of x in dBW.

y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except
that awgn measures the power of x before adding noise.

y = awgn(x,snr,sigpower,state) is the same as y =
awgn(x,snr,sigpower), except that awgn first resets the state of the
normal random number generator randn to the integer state.

y = awgn(x,snr,'measured',state) is the same as y =
awgn(x,snr,'measured'), except that awgn first resets the state of
normal random number generator randn to the integer state.

y = awgn(...,powertype) is the same as the previous syntaxes,
except that the string powertype specifies the units of snr and
sigpower. Choices for powertype are 'db' and 'linear'. If powertype
is 'db', then snr is measured in dB and sigpower is measured in dBW.
If powertype is 'linear', snr is measured as a ratio and sigpower is
measured in watts.

Relationship Among SNR, Es/N0, and Eb/N0

For the relationships between SNR and other measures of the relative
power of the noise, see “Describing the Noise Level of an AWGN
Channel”.
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Examples The commands below add white Gaussian noise to a sawtooth signal. It
then plots the original and noisy signals.

t = 0:.1:10;
x = sawtooth(t); % Create sawtooth signal.
y = awgn(x,10,'measured'); % Add white Gaussian noise.
plot(t,x,t,y) % Plot both signals.
legend('Original signal','Signal with AWGN');

Several other examples that illustrate the use of awgn are in “Getting
Started”. The following demos also use awgn: basicsimdemo,
vitsimdemo, and scattereyedemo.

See Also wgn, randn, bsc, “AWGN Channel”
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Purpose BCH decoder

Syntax decoded = bchdec(code,n,k)
decoded = bchdec(...,paritypos)
[decoded,cnumerr] = bchdec(...)
[decoded,cnumerr,ccode] = bchdec(...)

Description decoded = bchdec(code,n,k) attempts to decode the received signal
in code using an [n,k] BCH decoder with the narrow-sense generator
polynomial. code is a Galois array of symbols over GF(2). Each
n-element row of code represents a corrupted systematic codeword,
where the parity symbols are at the end and the leftmost symbol is
the most significant symbol.

In the Galois array decoded, each row represents the attempt at
decoding the corresponding row in code. A decoding failure occurs
if bchdec detects more than t errors in a row of code, where t is the
number of correctable errors as reported by bchgenpoly. In the case of
a decoding failure, bchdec forms the corresponding row of decoded by
merely removing n-k symbols from the end of the row of code.

decoded = bchdec(...,paritypos) specifies whether the parity
symbols in code were appended or prepended to the message in
the coding operation. The string paritypos can be either 'end' or
'beginning'. The default is 'end'. If paritypos is 'beginning',
then a decoding failure causes bchdec to remove n-k symbols from the
beginning rather than the end of the row.

[decoded,cnumerr] = bchdec(...) returns a column vector cnumerr,
each element of which is the number of corrected errors in the
corresponding row of code. A value of -1 in cnumerr indicates a
decoding failure in that row in code.

[decoded,cnumerr,ccode] = bchdec(...) returns ccode, the
corrected version of code. The Galois array ccode has the same format
as code. If a decoding failure occurs in a certain row of code, the
corresponding row in ccode contains that row unchanged.
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Results
of Error
Correction

BCH decoders correct up to a certain number of errors, specified by the
user. If the input contains more errors than the decoder is meant to
correct, the decoder will most likely not output the correct codeword.

The chance of a BCH decoder decoding a corrupted input to the correct
codeword depends on the number of errors in the input and the number
of errors the decoder is meant to correct.
For example, when a single-error-correcting BCH decoder is given input
with two errors, it actually decodes it to a different codeword. When a
double-error-correcting BCH decoder is given input with three errors,
then it only sometimes decodes it to a valid codeword.

The following code illustrates this phenomenon for a
single-error-correcting BCH decoder given input with two errors.

n = 63; k = 57;
msg = gf(randint(1, k, 2, 9973));
code = bchenc(msg, n, k);

% Add 2 errors
cnumerr2 = zeros(nchoosek(n,2),1);
nErrs = zeros(nchoosek(n,2),1);
cnumerrIdx = 1;
for idx1 = 1 : n-1

sprintf('idx1 for 2 errors = %d', idx1)
for idx2 = idx1+1 : n

errors = zeros(1,n);
errors(idx1) = 1;
errors(idx2) = 1;
erroredCode = code + gf(errors);
[decoded2, cnumerr2(cnumerrIdx)]...

= bchdec(erroredCode, n, k);

% If bchdec thinks it corrected only one error,
% then encode the decoded message. Check that
% the re-encoded message differs from the errored
% message in only one coordinate.
if cnumerr2(cnumerrIdx) == 1
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code2 = bchenc(decoded2, n, k);
nErrs(cnumerrIdx) = biterr(double(erroredCode.x),...

double(code2.x));
end

cnumerrIdx = cnumerrIdx + 1;
end

end

% Plot the computed number of errors, based on the difference
% between the double-errored codeword and the codeword that was
% re-encoded from the initial decoding.
plot(nErrs)
title('Number of Actual Errors between Errored Codeword and...

Re-encoded Codeword')

The resulting plot shows that all inputs with two errors are decoded to
a codeword that differs in exactly one position.
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Examples The script below encodes a (random) message, simulates the addition of
noise to the code, and then decodes the message.

m = 4; n = 2^m-1; % Codeword length
k = 5; % Message length
nwords = 10; % Number of words to encode
msg = gf(randint(nwords,k));
% Find t, the error-correction capability.
[genpoly,t] = bchgenpoly(n,k);
% Define t2, the number of errors to add in this example.
t2 = t;

% Encode the message.
code = bchenc(msg,n,k);
% Corrupt up to t2 bits in each codeword.
noisycode = code + randerr(nwords,n,1:t2);
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% Decode the noisy code.
[newmsg,err,ccode] = bchdec(noisycode,n,k);
if ccode==code

disp('All errors were corrected.')
end
if newmsg==msg

disp('The message was recovered perfectly.')
end

In this case, all errors are corrected and the message is recovered
perfectly. However, if you change the definition of t2 to

t2 = t+1;

then some codewords will contain more than t errors. This is too many
errors, and some are not corrected.

Algorithm bchdec uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the works listed in “References”
on page 2-23.

Limitations The maximum allowable value of n is 65535.

See Also bchenc, bchgenpoly, “Block Coding”

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, NJ, Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.
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Purpose BCH encoder

Syntax code = bchenc(msg,n,k)
code = bchenc(...,paritypos)

Description code = bchenc(msg,n,k) encodes the message in msg using an [n,k]
BCH encoder with the narrow-sense generator polynomial. msg is
a Galois array of symbols over GF(2). Each k-element row of msg
represents a message word, where the leftmost symbol is the most
significant symbol. Parity symbols are at the end of each word in the
output Galois array code.

code = bchenc(...,paritypos) specifies whether bchenc appends or
prepends the parity symbols to the input message to form code. The
string paritypos can be either 'end' or 'beginning'. The default is
'end'.

The tables below list valid [n,k] pairs for small values of n, as well as
the corresponding values of the error-correction capability, t.

n k t

7 4 1

n k t

15 11 1
15 7 2
15 5 3
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n k t

31 26 1
31 21 2
31 16 3
31 11 5
31 6 7

n k t

63 57 1
63 51 2
63 45 3
63 39 4
63 36 5
63 30 6
63 24 7
63 18 10
63 16 11
63 10 13
63 7 15

n k t

127 120 1
127 113 2
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n k t

127 106 3
127 99 4
127 92 5
127 85 6
127 78 7
127 71 9
127 64 10
127 57 11
127 50 13
127 43 14
127 36 15
127 29 21
127 22 23
127 15 27
127 8 31

n k t

255 247 1
255 239 2
255 231 3
255 223 4
255 215 5
255 207 6
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n k t

255 199 7
255 191 8
255 187 9
255 179 10
255 171 11
255 163 12
255 155 13
255 147 14
255 139 15
255 131 18
255 123 19
255 115 21
255 107 22
255 99 23
255 91 25
255 87 26
255 79 27
255 71 29
255 63 30
255 55 31
255 47 42
255 45 43
255 37 45
255 29 47
255 21 55
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n k t

255 13 59
255 9 63

n k t

511 502 1
511 493 2
511 484 3
511 475 4
511 466 5
511 457 6
511 448 7
511 439 8
511 430 9
511 421 10
511 412 11
511 403 12
511 394 13
511 385 14
511 376 15
511 367 16
511 358 18
511 349 19
511 340 20
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n k t

511 331 21
511 322 22
511 313 23
511 304 25
511 295 26
511 286 27
511 277 28
511 268 29
511 259 30
511 250 31
511 241 36
511 238 37
511 229 38
511 220 39
511 211 41
511 202 42
511 193 43
511 184 45
511 175 46
511 166 47
511 157 51
511 148 53
511 139 54
511 130 55
511 121 58
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n k t

511 112 59
511 103 61
511 94 62
511 85 63
511 76 85
511 67 87
511 58 91
511 49 93
511 40 95
511 31 109
511 28 111
511 19 119
511 10 121

Examples See the example on the reference page for the function bchdec.

Limitations The maximum allowable value of n is 65535.

See Also bchdec, bchgenpoly, bchnumerr, “Block Coding”
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Purpose Generator polynomial of BCH code

Syntax genpoly = bchgenpoly(n,k)
genpoly = bchgenpoly(n,k,prim_poly)
[genpoly,t] = bchgenpoly(...)

Description genpoly = bchgenpoly(n,k) returns the narrow-sense generator
polynomial of a BCH code with codeword length n and message length
k. The codeword length n must have the form 2m-1 for some integer m.
The output genpoly is a Galois row vector in GF(2) that represents the
coefficients of the generator polynomial in order of descending powers.
The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ...,
m_2t(x)], where LCM is the least common multiple, m_i(x) is the
minimum polynomial corresponding to αi, α is a root of the default
primitive polynomial for the field GF(n+1), and t is the error-correcting
capability of the code.

Note Although the bchgenpoly function performs intermediate
computations in GF(n+1), the final polynomial has binary coefficients.
The output from bchgenpoly is a Galois vector in GF(2) rather than
in GF(n+1).

genpoly = bchgenpoly(n,k,prim_poly) is the same as the syntax
above, except that prim_poly specifies the primitive polynomial for
GF(n+1) that has A as a root. prim_poly is an integer whose binary
representation indicates the coefficients of the primitive polynomial. To
use the default primitive polynomial for GF(n+1), set prim_poly to [].

[genpoly,t] = bchgenpoly(...) returns t, the error-correction
capability of the code.

Examples The results below show that a [15,11] BCH code can correct one error
and has a generator polynomial X4 + X + 1.

m = 4;
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n = 2^m-1; % Codeword length
k = 11; % Message length
% Get generator polynomial and error-correction capability.
[genpoly,t] = bchgenpoly(n,k)

The output is

genpoly = GF(2) array.

Array elements =

1 0 0 1 1

t =

1

Limitations The maximum allowable value of n is 511.

See Also bchenc, bchdec, bchnumerr, “Block Coding”

References [1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes,
2nd ed., Cambridge, MA, MIT Press, 1972.
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Purpose Number of correctable errors for BCH code

Syntax T = bchnumerr(N)
T = bchnumerr(N, K)

Description T = bchnumerr(N) returns all the possible combinations of message
length, K, and number of correctable errors, t, for a BCH code of
codeword length, N. N must have the form 2m-1 for some integer, m,
between 3 and 16. T is a matrix with three columns. The first column
lists N, the second column lists K, and the third column lists t.

T = bchnumerr(N, K) returns the number of correctable errors, t,
for an (N, K) BCH code.

See Also bchenc, bchdec, bchgenpoly
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Purpose Bit error rate (BER) for uncoded AWGN channels

Syntax ber = berawgn(EbNo,'pam',M)
ber = berawgn(EbNo,'qam',M)
ber = berawgn(EbNo,'psk',M,dataenc)
ber = berawgn(EbNo,'oqpsk',dataenc)
ber = berawgn(EbNo,'dpsk',M)
ber = berawgn(EbNo,'fsk',M,coherence)
ber = berawgn(EbNo,'fsk',2,coherence,rho)
ber = berawgn(EbNo,'msk',precoding)
ber = berawgn(EbNo,'msk',precoding,coherence)
berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin)
[BER,SER] = berawgn(EbNo, ...)

Graphical
Interface

As an alternative to the berawgn function, invoke the BERTool GUI
(bertool), and use the Theoretical tab.

Description For All Syntaxes

The berawgn function returns the BER of various modulation schemes
over an additive white Gaussian noise (AWGN) channel. The first
input argument, EbNo, is the ratio of bit energy to noise power spectral
density, in dB. If EbNo is a vector, the output ber is a vector of the same
size, whose elements correspond to the different Eb/N0 levels. The
supported modulation schemes, which correspond to the second input
argument to the function, are in the following table.

Modulation Scheme Second Input Argument

Phase shift keying (PSK) 'psk'

Offset quaternary phase shift
keying (OQPSK)

'oqpsk'

Differential phase shift keying
(DPSK)

'dpsk'
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Modulation Scheme Second Input Argument

Pulse amplitude modulation
(PAM)

'pam'

Quadrature amplitude
modulation (QAM)

'qam'

Frequency shift keying (FSK) 'fsk'

Minimum shift keying (MSK) 'msk'

Continuous phase frequency shift
keying (CPFSK)

'cpfsk'

Most syntaxes also have an M input that specifies the alphabet size
for the modulation. M must have the form 2k for some positive integer
k. For all cases, the function assumes the use of a Gray-coded signal
constellation.

For Specific Syntaxes

ber = berawgn(EbNo,'pam',M) returns the BER of uncoded PAM over
an AWGN channel with coherent demodulation.

ber = berawgn(EbNo,'qam',M) returns the BER of uncoded QAM over
an AWGN channel with coherent demodulation. The alphabet size, M,
must be at least 4. When k M= log2 is odd, a rectangular constellation

of size M I J= × is used, where I
k

=
−

2
1

2 and J
k

=
+

2
1

2 .

ber = berawgn(EbNo,'psk',M,dataenc) returns the BER of coherently
detected uncoded PSK over an AWGN channel. dataenc is either
'diff' for differential data encoding or 'nondiff' for nondifferential
data encoding. If dataenc is 'diff', M must be no greater than 4.

ber = berawgn(EbNo,'oqpsk',dataenc) returns the BER of coherently
detected offset-QPSK over an uncoded AWGN channel.

ber = berawgn(EbNo,'dpsk',M) returns the BER of uncoded DPSK
modulation over an AWGN channel.
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ber = berawgn(EbNo,'fsk',M,coherence) returns the BER of
orthogonal uncoded FSK modulation over an AWGN channel.
coherence is either 'coherent' for coherent demodulation or
'noncoherent' for noncoherent demodulation. M must be no greater
than 64 for 'noncoherent'.

ber = berawgn(EbNo,'fsk',2,coherence,rho) returns the BER for
binary nonorthogonal FSK over an uncoded AWGN channel, where
rho is the complex correlation coefficient. See “Nonorthogonal 2-FSK
with Coherent Detection” for the definition of the complex correlation
coefficient and how to compute it for nonorthogonal BFSK.

ber = berawgn(EbNo,'msk',precoding) returns the BER of coherently
detected MSK modulation over an uncoded AWGN channel. Setting
precoding to 'off' returns results for conventional MSK while setting
precoding to 'on' returns results for precoded MSK.

ber = berawgn(EbNo,'msk',precoding,coherence) specifies whether
the detection is coherent or noncoherent.

berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin) returns a lower
bound on the BER of uncoded CPFSK modulation over an AWGN
channel. modindex is the modulation index, a positive real number.
kmin is the number of paths having the minimum distance; if this
number is unknown, you can assume a value of 1.

[BER,SER] = berawgn(EbNo, ...) returns both the BER and SER.

Examples An example using this function is in “Comparing Theoretical and
Empirical Error Rates”.

Limitations The numerical accuracy of this function’s output is limited by
approximations related to the numerical implementation of the
expressions.

You can generally rely on the first couple of significant digits of the
function’s output.

See Also bercoding, berfading, bersync, “Theoretical Performance Results”
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Purpose Bit error rate (BER) for coded AWGN channels

Syntax berub = bercoding(EbNo,'conv',decision,coderate,dspec)
berub = bercoding(EbNo,'block','hard',n,k,dmin)
berub = bercoding(EbNo,'block','soft',n,k,dmin)
berub = bercoding(EbNo,'Hamming','hard',n)
berub = bercoding(EbNo,'Golay','hard',24)
berub = bercoding(EbNo,'RS','hard',n,k)

Graphical
Interface

As an alternative to the bercoding function, invoke the BERTool GUI
(bertool) and use the Theoretical tab.

Description berub = bercoding(EbNo,'conv',decision,coderate,dspec)
returns an upper bound on the BER of a binary convolutional code with
coherent phase shift keying (PSK) modulation over an additive white
Gaussian noise (AWGN) channel. EbNo is the ratio of bit energy to noise
power spectral density, in dB. If EbNo is a vector, berub is a vector of
the same size, whose elements correspond to the different Eb/N0 levels.
To specify hard-decision decoding, set decision to 'hard'; to specify
soft-decision decoding, set decision to 'soft'. The convolutional code
has code rate equal to coderate. The dspec input is a structure that
contains information about the code’s distance spectrum:

• dspec.dfree is the minimum free distance of the code.

• dspec.weight is the weight spectrum of the code.

To find distance spectra for some sample codes, use the distspec
function or see [5] and [3].

Note The results for binary PSK and quaternary PSK modulation are
the same. This function does not support M-ary PSK when M is other
than 2 or 4.
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berub = bercoding(EbNo,'block','hard',n,k,dmin) returns an
upper bound on the BER of an [n,k] binary block code with hard-decision
decoding and coherent BPSK or QPSK modulation. dmin is the
minimum distance of the code.

berub = bercoding(EbNo,'block','soft',n,k,dmin) returns an
upper bound on the BER of an [n,k] binary block code with soft-decision
decoding and coherent BPSK or QPSK modulation. dmin is the
minimum distance of the code.

berub = bercoding(EbNo,'Hamming','hard',n) returns an
approximation of the BER of a Hamming code using hard-decision
decoding and coherent BPSK modulation. (For a Hamming code, if n is
known, then k can be computed directly from n.)

berub = bercoding(EbNo,'Golay','hard',24) returns an upper
bound of the BER of a Golay code using hard-decision decoding and
coherent BPSK modulation. Support for Golay currently is only for
n=24.

In accordance with [3], the Golay coding upper bound assumes only the
correction of 3-error patterns. Even though it is theoretically possible to
correct approximately 19% of 4-error patterns, most decoders in practice
do not have this capability.

berub = bercoding(EbNo,'RS','hard',n,k) returns an upper bound
of the BER of (n,k) Reed-Solomon code using hard-decision decoding
and coherent BPSK modulation.

Examples An example using this function for a convolutional code is in “Plotting
Theoretical Error Rates”.

The following example finds an upper bound on the theoretical BER of a
block code. It also uses the berfit function to perform curve fitting.

n = 23; k = 12; % Lengths of codewords and messages
dmin = 7; % Minimum distance
EbNo = 1:10;
ber_block = bercoding(EbNo,'block','hard',n,k,dmin);
berfit(EbNo,ber_block) % Plot BER points and fitted curve.
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ylabel('Bit Error Probability');
title('BER Upper Bound vs. Eb/No, with Best Curve Fit');

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

See Also berawgn, berfading, bersync, distspec, “Theoretical Performance
Results”
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Purpose Bit error rate (BER) and confidence interval of Monte Carlo simulation

Syntax [ber,interval] = berconfint(nerrs,ntrials)
[ber,interval] = berconfint(nerrs,ntrials,level)

Description [ber,interval] = berconfint(nerrs,ntrials) returns the error
probability estimate ber and the 95% confidence interval interval for a
Monte Carlo simulation of ntrials trials with nerrs errors. interval
is a two-element vector that lists the endpoints of the interval. If the
errors and trials are measured in bits, the error probability is the bit
error rate (BER); if the errors and trials are measured in symbols, the
error probability is the symbol error rate (SER).

[ber,interval] = berconfint(nerrs,ntrials,level) specifies the
confidence level as a real number between 0 and 1.

Examples If a simulation of a communication system results in 100 bit errors in
106 trials, the BER (bit error rate) for that simulation is the quotient
10-4. The command below finds the 95% confidence interval for the
BER of the system.

nerrs = 100; % Number of bit errors in simulation
ntrials = 10^6; % Number of trials in simulation
level = 0.95; % Confidence level
[ber,interval] = berconfint(nerrs,ntrials,level)

The output below shows that, with 95% confidence, the BER for the
system is between 0.0000814 and 0.0001216.
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ber =

1.0000e-004

interval =

1.0e-003 *

0.0814 0.1216

For an example that uses the output of berconfint to plot error bars on
a BER plot, see “Example: Curve Fitting for an Error Rate Plot”

See Also binofit (Statistics Toolbox), mle (Statistics Toolbox), “Performance
Evaluation”

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.
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Purpose Bit error rate (BER) for Rayleigh and Rician fading channels

Syntax ber = berfading(EbNo,'pam',M,divorder)
ber = berfading(EbNo,'qam',M,divorder)
ber = berfading(EbNo,'psk',M,divorder)
ber = berfading(EbNo,'depsk',M,divorder)
ber = berfading(EbNo,'oqpsk',divorder)
ber = berfading(EbNo,'dpsk',M,divorder)
ber = berfading(EbNo,'fsk',M,divorder,coherence)
ber = berfading(EbNo,'fsk',2,divorder,coherence,rho)
ber = berfading(EbNo,...,K)
ber = berfading(EbNo,'psk',2,1,K,phaserr)
[BER,SER] = berfading(EbNo, ...)

Graphical
Interface

As an alternative to the berfading function, invoke the BERTool GUI
(bertool), and use the Theoretical tab.

Description For All Syntaxes

The first input argument, EbNo, is the ratio of bit energy to noise power
spectral density, in dB. If EbNo is a vector, the output ber is a vector of
the same size, whose elements correspond to the different Eb/N0 levels.
Most syntaxes also have an M input that specifies the alphabet size for
the modulation. M must have the form 2k for some positive integer k.

berfading uses expressions that assume Gray coding. If you use binary
coding, the results may differ.

For cases where diversity is used, the SNR on each diversity branch is
EbNo/divorder, where divorder is the diversity order (the number of
diversity branches) and is a positive integer.

For Specific Syntaxes

ber = berfading(EbNo,'pam',M,divorder) returns the BER for PAM
over an uncoded Rayleigh fading channel with coherent demodulation.

ber = berfading(EbNo,'qam',M,divorder) returns the BER for QAM
over an uncoded Rayleigh fading channel with coherent demodulation.
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The alphabet size, M, must be at least 4. When k M= log2 is odd, a

rectangular constellation of size M I J= × is used, where I
k

=
−

2
1

2

and J
k

=
+

2
1

2 .

ber = berfading(EbNo,'psk',M,divorder) returns the BER for
coherently detected PSK over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'depsk',M,divorder) returns the BER
for coherently detected PSK with differential data encoding over an
uncoded Rayleigh fading channel. Only M = 2 is currently supported.

ber = berfading(EbNo,'oqpsk',divorder) returns the BER of
coherently detected offset-QPSK over an uncoded Rayleigh fading
channel.

ber = berfading(EbNo,'dpsk',M,divorder) returns the BER for
DPSK over an uncoded Rayleigh fading channel. For DPSK, it is
assumed that the fading is slow enough that two consecutive symbols
are affected by the same fading coefficient.

ber = berfading(EbNo,'fsk',M,divorder,coherence) returns
the BER for orthogonal FSK over an uncoded Rayleigh fading
channel. coherence should be 'coherent' for coherent detection, or
'noncoherent' for noncoherent detection.

ber = berfading(EbNo,'fsk',2,divorder,coherence,rho) returns
the BER for binary nonorthogonal FSK over an uncoded Rayleigh fading
channel. rho is the complex correlation coefficient. See “Nonorthogonal
2-FSK with Coherent Detection” for the definition of the complex
correlation coefficient and how to compute it for nonorthogonal BFSK.

ber = berfading(EbNo,...,K) returns the BER over an uncoded
Rician fading channel, where K is the ratio of specular to diffuse energy
in linear scale. For the case of 'fsk', rho must be specified before K.

ber = berfading(EbNo,'psk',2,1,K,phaserr) returns the BER of
BPSK over an uncoded Rician fading channel with imperfect phase
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synchronization. phaserr is the standard deviation of the reference
carrier phase error in radians.

[BER,SER] = berfading(EbNo, ...) returns both the BER and SER.

Examples The following example computes and plots the BER for uncoded DQPSK
(differential quaternary phase shift keying) modulation over an flat
Rayleigh fading channel.

EbNo = 0:5:35;
M = 4; % Use DQPSK, so M = 4.
divorder = 1;
ber = berfading(EbNo,'dpsk',M,divorder);
semilogy(EbNo,ber,'b.-');
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Limitations The numerical accuracy of this function’s output is limited by
approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

See Also berawgn, bercoding, bersync, “Theoretical Performance Results”

References [1] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

[2] Modestino, James W., and Mui, Shou Y., Convolutional code
performance in the Rician fading channel, IEEE Trans. Commun., 1976.

[3] Cho, K., and Yoon, D., “On the general BER expression of one- and
two-dimensional amplitude modulations”, IEEE Trans. Commun., Vol.
50, Number 7, pp. 1074-1080, 2002.

[4] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK
with Gray code bit mapping”, IEEE Trans. Commun., Vol. COM-34,
Number 5, pp. 488-491, 1986.

[5] Lindsey, W. C., “Error probabilities for Rician fading multichannel
reception of binary and N-ary signals”, IEEE Trans. Inform. Theory,
Vol. IT-10, pp. 339-350, 1964.

[6] Simon, M. K , Hinedi, S. M., and Lindsey, W. C., Digital
Communication Techniques – Signal Design and Detection,
Prentice-Hall, 1995.

[7] Simon, M. K., and Alouini, M. S., Digital Communication over
Fading Channels – A Unified Approach to Performance Analysis, 1st
ed., Wiley, 2000.
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[8] Simon, M. K , “On the bit-error probability of differentially encoded
QPSK and offset QPSK in the presence of carrier synchronization”,
IEEE Trans. Commun., Vol. 54, pp. 806-812, 2006.
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Purpose Fit curve to nonsmooth empirical bit error rate (BER) data

Syntax fitber = berfit(empEbNo,empber)
fitber = berfit(empEbNo,empber,fitEbNo)
fitber = berfit(empEbNo,empber,fitEbNo,options)
fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
[fitber,fitprops] = berfit(...)
berfit(...)
berfit(empEbNo,empber,fitEbNo,options,'all')

Description fitber = berfit(empEbNo,empber) fits a curve to the empirical BER
data in the vector empber and returns a vector of fitted bit error rate
(BER) points. The values in empber and fitber correspond to the
Eb/N0 values, in dB, given by empEbNo. The vector empEbNo must be in
ascending order and must have at least four elements.

Note The berfit function is intended for curve fitting or interpolation,
not extrapolation. Extrapolating BER data beyond an order of
magnitude below the smallest empirical BER value is inherently
unreliable.

fitber = berfit(empEbNo,empber,fitEbNo) fits a curve to the
empirical BER data in the vector empber corresponding to the Eb/N0
values, in dB, given by empEbNo. The function then evaluates the curve
at the Eb/N0 values, in dB, given by fitEbNo and returns the fitted BER
points. The length of fitEbNo must equal or exceed that of empEbNo.

fitber = berfit(empEbNo,empber,fitEbNo,options) uses the
structure options to override the default options used for optimization.
These options are the ones used by the fminsearch function. You can
create the options structure using the optimset function. Particularly
relevant fields are described in the table below.
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Field Description

options.Display Level of display: 'off' (default)
displays no output; 'iter'
displays output at each iteration;
'final' displays only the final
output; 'notify' displays output
only if the function does not
converge.

options.MaxFunEvals Maximum number of function
evaluations before optimization
ceases. The default is 104.

options.MaxIter Maximum number of iterations
before optimization ceases. The
default is 104.

options.TolFun Termination tolerance on the
closed-form function used to
generate the fit. The default is
10-4.

options.TolX Termination tolerance on
the coefficient values of the
closed-form function used to
generate the fit. The default is
10-4.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
specifies which closed-form function berfit uses to fit the empirical
data, from the possible fits listed in “Algorithm” on page 2-52
below. fittype can be 'exp', 'exp+const', 'polyRatio', or
'doubleExp+const'. To avoid overriding default optimization options,
use options = [].

[fitber,fitprops] = berfit(...) returns the MATLAB structure
fitprops, which describes the results of the curve fit. Its fields are
described in the table below.
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Field Description

fitprops.fitType The closed-form function type
used to generate the fit: 'exp',
'exp+const', 'polyRatio', or
'doubleExp+const'.

fitprops.coeffs The coefficients used to generate
the fit. If the function cannot
find a valid fit, fitprops.coeffs
is an empty vector.

fitprops.sumSqErr The sum squared error between
the log of the fitted BER points
and the log of the empirical BER
points.

fitprops.exitState The exit condition of berfit:
'The curve fit converged
to a solution.', 'The
maximum number of function
evaluations was exceeded.',
or 'No desirable fit was
found'.

fitprops.funcCount The number of function
evaluations used in minimizing
the sum squared error function.

fitprops.iterations The number of iterations taken
in minimizing the sum squared
error function. This is not
necessarily equal to the number
of function evaluations.

berfit(...) plots the empirical and fitted BER data.

berfit(empEbNo,empber,fitEbNo,options,'all') plots the empirical
and fitted BER data from all the possible fits, listed in the “Algorithm”
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on page 2-52 below, that return a valid fit. To avoid overriding default
options, use options = [].

Note A valid fit must be real valued and monotonically decreasing
between 0 and 0.5, inclusively. If a fit does not confirm to this criteria,
it is rejected.

Algorithm The berfit function fits the BER data using unconstrained nonlinear
optimization via the fminsearch function. The closed-form functions
that berfit considers are listed in the table below, where x is the
Eb/N0 in linear terms (not dB) and f is the estimated BER. These
functions were empirically found to provide close fits in a wide variety
of situations, including exponentially decaying BERs, linearly varying
BERs, and BER curves with error rate floors.

Value of fittype Functional Expression

'exp'

f x a x a a a( ) exp{ [( ) / ] }= − −1 2 3
4

'exp+const'

f x a x a a aa( ) exp{ [( ) / ] }= − − +1 2 3 5
4

'polyRatio'

f x
a x a x a

x a x a x a
( ) =

+ +

+ + +
1

2
2 3

3
4

2
5 6

'doubleExp+const'

a x a a

a x a a a

a

a
1 2 3 4

5 6 7 8 9

exp{ / }

exp{ / }

− −( )⎡⎣ ⎤⎦

+ − −( )⎡⎣ ⎤⎦ +

The sum squared error function that fminsearch attempts to minimize
is
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F = −∑[log( ) log( )]empirical BER fitted BER 2

where the fitted BER points are the values in fitber and the sum
is over the Eb/N0 points given in empEbNo. It is important to use the
log of the BER values rather than the BER values themselves so
that the high-BER regions do not dominate the objective function
inappropriately.

Examples The examples below illustrate the syntax of the function, but they use
hard-coded or theoretical BER data for simplicity. For an example
that uses empirical BER data from a simulation, see “Example: Curve
Fitting for an Error Rate Plot”.

The code below plots the best fit for a sample set of data.

EbNo = [0:13];

berdata = [.2 .15 .13 .12 .08 .09 .08 .07 .06 .04 .03 .02 .01 .004];

berfit(EbNo,berdata); % Plot the best fit.

The curve connects the points created by evaluating the fit expression
at the values in EbNo. To make the curve look smoother, use a syntax
like berfit(EbNo,berdata,[0:0.2:13]). This alternative syntax uses
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more points when plotting the curve, but it does not change the fit
expression.

The next example demonstrates a fit for a BER curve with an error
floor. We generate the empirical BER array by simulating a channel
with a null (ch = [0.5 0.47]) with BPSK modulation and linear
MMSE equalizer at the receiver. We run the berfit with the 'all'
option. The 'doubleExp+const' fit does not provide a valid fit, and the
'exp' fit type does not work well for this data. The 'exp+const' and
'polyRatio' fits closely match the simulated data.

EbNo = -10:3:15;

empBER = [0.3361 0.3076 0.2470 0.1878 0.1212 0.0845 0.0650 0.0540 0.0474];

figure; berfit(EbNo, empBER, [], [], 'all');

The following code illustrates the use of the options input structure
as well as the fitprops output structure. The 'notify' value for the
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display level causes the function to produce output when one of the
attempted fits does not converge. The exitState field of the output
structure also indicates which fit converges and which fit does not.

M = 4; EbNo = [3:10];
berdata = berfading(EbNo,'psk',M,2); % Compute theoretical BER.
noisydata = berdata.*[.93 .92 .9 .59 .18 .15 .01 .01];
% Say when fit fails to converge.
options = optimset('display','notify');

disp('*** Trying polynomial ratio fit.') % Poor fit in this case
[fitber1,fitprops1] = berfit(EbNo,noisydata,EbNo,...

options,'polyRatio')

disp('*** Trying double exponential + constant fit.') % Good fit
[fitber2,fitprops2] = berfit(EbNo,noisydata,EbNo,...

options,'doubleExp+const')

The output is as follows:

*** Trying polynomial ratio fit.

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
Current function value: 1.022082

fitber1 =

Columns 1 through 6

0.1040 0.0507 0.0235 0.0100 0.0037 0.0010

Columns 7 through 8

0.0001 0.0001
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fitprops1 =

fitType: 'polyRatio'
coeffs: [6x1 double]

sumSqErr: 1.0221
exitState: 'The curve fit converged to a solution'
funcCount: 2162

iterations: 1233

*** Trying double exponential + constant fit.

fitber2 =

Columns 1 through 6

0.0603 0.0398 0.0237 0.0123 0.0051 0.0014

Columns 7 through 8

0.0001 0.0001

fitprops2 =

fitType: 'doubleExp+const'
coeffs: [9x1 double]

sumSqErr: 0.3977
exitState: 'The curve fit converged to a solution.'
funcCount: 5330

iterations: 3724

See Also fminsearch, optimset, “Performance Evaluation”

References For a general description of unconstrained nonlinear optimization, see
the following work.
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[1] Chapra, Steven C., and Raymond P. Canale, Numerical Methods for
Engineers, Fourth Edition, New York, McGraw-Hill, 2002.
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Purpose Bit error rate (BER) for imperfect synchronization

Syntax ber = bersync(EbNo,timerr,'timing')
ber = bersync(EbNo,phaserr,'carrier')

Graphical
Interface

As an alternative to the bersync function, invoke the BERTool GUI
(bertool) and use the Theoretical tab.

Description ber = bersync(EbNo,timerr,'timing') returns the BER of uncoded
coherent binary phase shift keying (BPSK) modulation over an additive
white Gaussian noise (AWGN) channel with imperfect timing. The
normalized timing error is assumed to have a Gaussian distribution.
EbNo is the ratio of bit energy to noise power spectral density, in
dB. If EbNo is a vector, the output ber is a vector of the same size,
whose elements correspond to the different Eb/N0 levels. timerr is
the standard deviation of the timing error, normalized to the symbol
interval. timerr must be between 0 and 0.5.

ber = bersync(EbNo,phaserr,'carrier') returns the BER of uncoded
BPSK modulation over an AWGN channel with a noisy phase reference.
The phase error is assumed to have a Gaussian distribution. phaserr
is the standard deviation of the error in the reference carrier phase,
in radians.

Examples The code below computes the BER of coherent BPSK modulation over an
AWGN channel with imperfect timing. The example varies both EbNo
and timerr. (When timerr assumes the final value of zero, the bersync
command produces the same result as berawgn(EbNo,'psk',2).)

EbNo = [4 8 12];
timerr = [0.2 0.07 0];
ber = zeros(length(timerr), length(EbNo));
for ii = 1:length(timerr)

ber(ii,:) = bersync(EbNo, timerr(ii),'timerr');
end
% Display result using scientific notation.
format short e; ber
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format; % Switch back to default notation format.

The output is below, where each row corresponds to a different value of
timerr and each column corresponds to a different value of EbNo.

ber =

5.2073e-002 2.0536e-002 1.1160e-002
1.8948e-002 7.9757e-004 4.9008e-006
1.2501e-002 1.9091e-004 9.0060e-009

Limitations The numerical accuracy of this function’s output is limited by

• Approximations in the analysis leading to the closed-form expressions
that the function uses

• Approximations related to the numerical implementation of the
expressions

You can generally rely on the first couple of significant digits of the
function’s output.

Limitations Related to Extreme Values of Input Arguments

Inherent limitations in numerical precision force the function to assume
perfect synchronization if the value of timerr or phaserr is very
small. The table below indicates how the function behaves under these
conditions.

Condition Behavior of Function

timerr < eps bersync(EbNo,timerr,'timing')
defined as berawgn(EbNo,'psk',2)

phaserr < eps bersync(EbNo,phaserr,'carrier')
defined as berawgn(EbNo,'psk',2)

Algorithm This function uses formulas from [3].

When the last input is 'timing', the function computes
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where σ is the timerr input and R is the value of EbNo converted from
dB to a linear scale.

When the last input is 'carrier', the function computes
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where σ is the phaserr input and R is the value of EbNo converted from
dB to a linear scale.

See Also berawgn, bercoding, berfading, “Theoretical Performance Results”

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.

[2] Sklar, Bernard, Digital Communications: Fundamentals and
Applications, Second Edition, Upper Saddle River, NJ, Prentice-Hall,
2001.

[3] Stiffler, J. J., Theory of Synchronous Communications, Englewood
Cliffs, NJ, Prentice-Hall, 1971.
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Purpose Open bit error rate analysis GUI (BERTool)

Syntax bertool

Description bertool launches the Bit Error Rate Analysis Tool (BERTool).
BERTool is a graphical user interface (GUI) that enables you to
analyze communications links’ BER performance via simulation-based,
semianalytic, or theoretical approach. To learn about BERTool, see
“BERTool: A Bit Error Rate Analysis GUI”.
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Purpose Convert binary vectors to decimal numbers

Syntax d = bi2de(b)
d = bi2de(b,flg)
d = bi2de(b,p)
d = bi2de(b,p,flg)

Description d = bi2de(b) converts a binary row vector b to a nonnegative decimal
integer. If b is a matrix, each row is interpreted separately as a binary
number. In this case, the output d is a column vector, each element of
which is the decimal representation of the corresponding row of b.

Note By default, bi2de interprets the first column of b as the
lowest-order digit.

d = bi2de(b,flg) is the same as the syntax above, except that flg
is a string that determines whether the first column of b contains
the lowest-order or highest-order digits. Possible values for flg are
'right-msb' and 'left-msb'. The value 'right-msb' produces the
default behavior.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative
decimal integer , where p is an integer greater than or equal to 2. The
first column of b is the lowest base-p digit. If b is a matrix, the output
d is a nonnegative decimal vector, each row of which is the decimal
form of the corresponding row of b.

d = bi2de(b,p,flg) is the same as the syntax above, except that
flg is a string that determines whether the first column of b contains
the lowest-order or highest-order digits. Possible values for flg are
'right-msb' and 'left-msb'. The value 'right-msb' produces the
default behavior.
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Examples The code below generates a matrix that contains binary representations
of five random numbers between 0 and 15. It then converts all five
numbers to decimal integers.

b = randint(5,4); % Generate a 5-by-4 random binary matrix.
de = bi2de(b);
disp(' Dec Binary')
disp(' ----- -------------------')
disp([de, b])

Sample output is below. Your results might vary because the numbers
are random.

Dec Binary
----- -------------------
13 1 0 1 1
7 1 1 1 0

15 1 1 1 1
4 0 0 1 0
9 1 0 0 1

The command below converts a base-five number into its decimal
counterpart, using the leftmost base-five digit (4 in this case)
as the most significant digit. The example reflects the fact that
4(53) + 2(52) +50 = 551.

d = bi2de([4 2 0 1],5,'left-msb')

The output is

d =

551

See Also de2bi
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Purpose Convert positive integers into corresponding Gray-encoded integers

Syntax y = bin2gray(x,modulation,M)
[y,map] = bin2gray(x,modulation,M)

Description y = bin2gray(x,modulation,M) generates a Gray-encoded vector or
matrix output y with the same dimensions as its input parameter x. x
can be a scalar, vector, or matrix. modulation is the modulation type
and must be a string equal to 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M
is the modulation order that can be an integer power of 2.

[y,map] = bin2gray(x,modulation,M) generates a Gray-encoded
output y with its respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map
output gives the Gray encoded labels for the corresponding modulation.
See the example below.

Note If you are converting binary coded data to Gray-coded data
and modulating the result immediately afterwards, you should use
the appropriate modulation object or function with the 'Gray' option,
instead of BIN2GRAY.

Example % To Gray encode a vector x with a 16-QAM Gray encoded
% constellation and return its map, use:
x=randint(1,100,16);
[y,map] = bin2gray(x,'qam',16);
% Obtain the symbols for 16-QAM
hMod = modem.qammod('M', 16);
symbols = hMod.Constellation;
% Plot the constellation
scatterplot(symbols);
set(get(gca,'Children'),'Marker','d','MarkerFaceColor',
'auto'); hold on;
% Label the constellation points according
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% to the Gray mapping
for jj=1:16
text(real(symbols(jj))-0.15,imag(symbols(jj))+0.15,...
dec2base(map(jj),2,4));
end
set(gca,'yTick',(-4:2:4),'xTick',(-4:2:4),...
'XLim',[-4 4],'YLim',...
[-4 4],'Box','on','YGrid','on', 'XGrid','on');

The example code generates the following plot, which shows the 16
QAM constellation with Gray-encoded labeling.

See Also gray2bin
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Purpose Compute number of bit errors and bit error rate (BER)

Syntax [number,ratio] = biterr(x,y)
[number,ratio] = biterr(x,y,k)
[number,ratio] = biterr(x,y,k,flg)
[number,ratio,individual] = biterr(...)

Description For All Syntaxes

The biterr function compares unsigned binary representations of
elements in x with those in y. The schematics below illustrate how the
shapes of x and y determine which elements biterr compares.
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Each element of x and y must be a nonnegative decimal integer; biterr
converts each element into its natural unsigned binary representation.
number is a scalar or vector that indicates the number of bits that differ.
ratio is number divided by the total number of bits. The total number
of bits, the size of number, and the elements that biterr compares
are determined by the dimensions of x and y and by the optional
parameters.

For Specific Syntaxes

[number,ratio] = biterr(x,y) compares the elements in x and y.
If the largest among all elements of x and y has exactly k bits in its
simplest binary representation, the total number of bits is k times the
number of entries in the smaller input. The sizes of x and y determine
which elements are compared:

2-66



biterr

• If x and y are matrices of the same dimensions, then biterr compares
x and y element by element. number is a scalar. See schematic (a) in
the preceding figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then biterr compares the vector element
by element with each row (resp., column) of the matrix. The length
of the vector must equal the number of columns (resp., rows) in the
matrix. number is a column (resp., row) vector whose mth entry
indicates the number of bits that differ when comparing the vector
with the mth row (resp., column) of the matrix. See schematics (b)
and (c) in the figure.

[number,ratio] = biterr(x,y,k) is the same as the first syntax, except
that it considers each entry in x and y to have k bits. The total number
of bits is k times the number of entries of the smaller of x and y. An
error occurs if the binary representation of an element of x or y would
require more than k digits.

[number,ratio] = biterr(x,y,k,flg) is similar to the previous
syntaxes, except that flg can override the defaults that govern which
elements biterr compares and how biterr computes the outputs. The
possible values of flg are 'row-wise', 'column-wise', and 'overall'.
The table below describes the differences that result from various
combinations of inputs. As always, ratio is number divided by the
total number of bits. If you do not provide k as an input argument,
the function defines it internally as the number of bits in the simplest
binary representation of the largest among all elements of x and y.
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Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of
Comparison

number Total
Number
of Bits

'overall'
(default)

Element by
element

Total
number
of bit
errors

k times
number of
entries of y

'row-wise' mth row of x
vs. mth row
of y

Column
vector
whose
entries
count bit
errors in
each row

k times
number of
entries of y

2-D matrix

'column-wise' mth column
of x vs. mth
column of y

Row
vector
whose
entries
count bit
errors
in each
column

k times
number of
entries of y
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Comparing a Two-Dimensional Matrix x with Another Input
y (Continued)

Shape of y flg Type of
Comparison

number Total
Number
of Bits

'overall' y vs. each
row of x

Total
number
of bit
errors

k times
number of
entries of x

Row vector

'row-wise'
(default)

y vs. each
row of x

Column
vector
whose
entries
count bit
errors in
each row
of x

k times size
of y

'overall' y vs. each
column of x

Total
number
of bit
errors

k times
number of
entries of x

Column
vector

'column-wise'
(default)

y vs. each
column of x

Row
vector
whose
entries
count bit
errors
in each
column of
x

k times size
of y

[number,ratio,individual] = biterr(...) returns a matrix
individual whose dimensions are those of the larger of x and y. Each
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entry of individual corresponds to a comparison between a pair of
elements of x and y, and specifies the number of bits by which the
elements in the pair differ.

Examples Example 1

The commands below compare the column vector [0; 0; 0] to each column
of a random binary matrix. The output is the number, proportion, and
locations of 1s in the matrix. In this case, individual is the same as
the random matrix.

format rat;
[number,ratio,individual] = biterr([0;0;0],randint(3,5))

The output is

number =

2 0 0 3 1

ratio =

2/3 0 0 1 1/3

individual =

1 0 0 1 0
1 0 0 1 0
0 0 0 1 1

Example 2

The commands below illustrate the use of flg to override the default
row-by-row comparison. number and ratio are scalars, and individual
has the same dimensions as the larger of the first two arguments of
biterr.
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format rat;
[number2,ratio2,individual2] = biterr([1 2; 3 4],[1 3],3,'overall')

The output is

number =

5

ratio =

5/12

individual =

0 1
1 3

Example 3

The script below adds errors to 10% of the elements in a matrix. Each
entry in the matrix is a two-bit number in decimal form. The script
computes the bit error rate using biterr and the symbol error rate
using symerr.

x = randint(100,100,4); % Original signal
% Create errors to add to ten percent of the elements of x.
% Errors can be either 1, 2, or 3 (not zero).
errorplace = (rand(100,100) > .9); % Where to put errors
errorvalue = randint(100,100,[1,3]); % Value of the errors
errors = errorplace.*errorvalue;
y = rem(x+errors,4); % Signal with errors added, mod 4
format short
[num_bit,ratio_bit] = biterr(x,y,2)
[num_sym,ratio_sym] = symerr(x,y)
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Sample output is below. ratio_sym is close to the target value of 0.10.
Your results might vary because the example uses random numbers.

num_bit =

1304

ratio_bit =

0.0652

num_sym =

981

ratio_sym =

0.0981

See Also symerr, “Performance Results via Simulation”
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Purpose Model binary symmetric channel

Syntax ndata = bsc(data,p)
ndata = bsc(data,p,state)
[ndata,err] = bsc(...)

Description ndata = bsc(data,p) passes the binary input signal data through
a binary symmetric channel with error probability p. The channel
introduces a bit error with probability p, processing each element of
data independently. data must be an array of binary numbers or a
Galois array in GF(2). p must be a scalar between 0 and 1.

ndata = bsc(data,p,state) resets the state of the uniform random
number generator rand to the integer state.

[ndata,err] = bsc(...) returns an array, err, containing the
channel errors.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples To introduce bit errors in the bits in a random matrix with probability
0.15, use the bsc function:

z = randint(100,100); % Random matrix

nz = bsc(z,.15); % Binary symmetric channel

[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors

The output below is typical. The percentage of bit errors is not exactly
15% in most trials, but it is close to 15% if the size of the matrix z is
large.
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numerrs =

1509

pcterrs =

0.1509

Another example using this function is in “Binary Symmetric Channel”.

See Also rand, awgn, “Binary Symmetric Channel”
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Purpose Construct constant modulus algorithm (CMA) object

Syntax alg = cma(stepsize)
alg = cma(stepsize,leakagefactor)

Description The cma function creates an adaptive algorithm object that you can use
with the lineareq function or dfe function to create an equalizer object.
You can then use the equalizer object with the equalize function to
equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

Note After you use either lineareq or dfe to create a CMA equalizer
object, you should initialize the equalizer object’s Weights property with
a nonzero vector. Typically, CMA is used with differential modulation;
otherwise, the initial weights are very important. A typical vector of
initial weights has a 1 corresponding to the center tap and 0s elsewhere.

alg = cma(stepsize) constructs an adaptive algorithm object based
on the constant modulus algorithm (CMA) with a step size of stepsize.

alg = cma(stepsize,leakagefactor) sets the leakage factor of
the CMA. leakagefactor must be between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, while a value of
0 corresponds to a memoryless update algorithm.

Properties

The table below describes the properties of the CMA adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'Constant
Modulus'
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Property Description

StepSize CMA step size parameter, a
nonnegative real number

LeakageFactor CMA leakage factor, a real
number between 0 and 1

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all weights wi and define
u as the vector of all inputs ui. Based on the current set of weights, w,
this adaptive algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

See Also lms, signlms, normlms, varlms, rls, lineareq, dfe, equalize,
“Equalizers”

References [1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, NJ, Prentice-Hall, 1996.

[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al.,
“Blind Equalization Using the Constant Modulus Criterion: A Review,”
Proceedings of the IEEE, Vol. 86, October 1998, pp. 1927–1950.
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Purpose Package of communications scope classes

Syntax h = commscope.<type>(...)

Description h = commscope.<type>(...) returns a communications scope object
h of type type.

Type help commscope/types to get a complete list of available types.

Each type of communications scope object is equipped with functions
for simulation and visualization. Type help commscope.<type> to get
the complete help on a specific communications scope object (e.g., help
commscope.eyediagram).

See Also commscope.eyediagram
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Purpose Eye diagram analysis

Syntax h = commscope.eyediagram
h = commscope.eyediagram(property1,value1,...)

Description h = commscope.eyediagram constructs an eye diagram object, h, with
default properties. This syntax is equivalent to:

H = commscope.eyediagram('SamplingFrequency', 10000, ...
'SamplesPerSymbol', 100, ...
'SymbolsPerTrace', 2, ...
'MinimumAmplitude', -1, ...
'MaximumAmplitude', 1, ...
'AmplitudeResolution', 0.0100, ...
'MeasurementDelay', 0, ...
'PlotType', '2D Color', ...
'PlotTimeOffset', 0, ...
'PlotPDFRange', [0 1], ...
'ColorScale', 'linear', ...
'RefreshPlot', 'on');

h = commscope.eyediagram(property1,value1,...) constructs an
eye diagram object, h, with properties as specified by property/value
pairs.

The eye diagram object creates a series of vertical histograms from zero
to T seconds, at Ts second intervals, where T is a multiple of the symbol
duration of the input signal and Ts is the sampling time. A vertical
histogram is defined as the histogram of the amplitude of the input
signal at a given time. The histogram information is used to obtain an
approximation to the probability density function (PDF) of the input
amplitude distribution. The histogram data is used to generate '2D
Color' plots, where the color indicates the value of the PDF, and '3D
Color' plots. The '2D Line' plot is obtained by constructing an eye
diagram from the last n traces stored in the object, where a trace is
defined as the segment of the input signal for a T second interval.
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You can change the plot type by setting the PlotType property. The
following plots are examples of each type.

2D-Color Eye Diagram
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3D-Color Eye Diagram
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2D-Line Eye Diagram

To see a detailed demonstration of this object’s use, type showdemo
scattereyedemo; at the command line.

Properties An eye diagram scope object has the properties shown on the following
table. All properties are writable except for the ones explicitly noted
otherwise.

Property Description

Type Type of scope object ('Eye Diagram').
This property is not writable.

SamplingFrequency Sampling frequency of the input signal
in hertz.
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Property Description

SamplesPerSymbol Number of samples used to
represent a symbol. An increase
in SamplesPerSymbol improves the
resolution of an eye diagram.

SymbolRate The symbol rate of the input signal.
This property is not writable
and is automatically computed
based on SamplingFrequency and
SamplesPerSymbol.

SymbolsPerTrace The number of symbols spanned on the
time axis of the eye diagram scope.

MinimumAmplitude Minimum amplitude of the input signal.
Signal values less than this value
are ignored both for plotting and for
measurement computation.

MaximumAmplitude Maximum amplitude of the input signal.
Signal values greater than this value
are ignored both for plotting and for
measurement computation.

AmplitudeResolution The resolution of the amplitude
axis. The amplitude axis is
created from MinimumAmplitude
to MaximumAmplitude with
AmplitudeResolution steps.

MeasurementDelay The time in seconds the scope waits
before starting to collect data.
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Property Description

PlotType Type of the eye diagram plot. The
choices are '2D Color' (two dimensional
eye diagram, where color intensity
represents the probability density
function values), '3D Color' (three
dimensional eye diagram, where the
z-axis represents the probability density
function values), and '2D Line' (two
dimensional eye diagram, where each
trace is represented by a line).

NumberOfStoredTraces The number of traces stored to display
the eye diagram in '2D Line' mode.

PlotTimeOffset The plot time offset input values must
reside in the closed interval [-Tsym
Tsym], where Tsym is the symbol
duration. Since the eye diagram is
periodic, if the value you enter is out of
range, it wraps to a position on the eye
diagram that is within range.

RefreshPlot The switch that controls the plot refresh
style. The choices are 'on' (the eye
diagram plot is refreshed every time the
update method is called) and 'off' (the
eye diagram plot is not refreshed when
the update method is called).

PlotPDFRange The range of the PDF values that will be
displayed in the '2D Color' mode. The
PDF values outside the range are set to
a constant mask color.

ColorScale The scale used to represent the color,
the z-axis, or both. The choices are
'linear' (linear scale) and 'log' (base
ten logarithmic scale).
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Property Description

SamplesProcessed The number of samples processed by the
eye diagram object. This value does not
include the discarded samples during the
MeasurementDelay period. This property
is not writable.

OperationMode When the operation mode is complex
signal, the eye diagram collects and plots
data on both the in-phase component
and the quadrature component. When
the operation mode is real signal, the eye
diagram collects and plots real signal
data.

Measurements An eye diagram can display various types
of measurements. All measurements
are done on both the in-phase and
quadrature signal, unless otherwise
stated. For more information, see the
Measurements section.

The resolution of the eye diagram in '2D Color' and '3D Color'
modes can be increased by increasing SamplingFrequency, decreasing
AmplitudeResolution, or both.

Changing MinimumAmplitude, MaximumAmplitude,
AmplitudeResolution, SamplesPerSymbol, SymbolsPerTrace, and
MeasurementDelay resets the measurements and updates the eye
diagram.

Methods An eye diagram object is equipped with seven methods for inspection,
object management, and visualization.

update

This method updates the eye diagram object data.
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update(h,x) updates the collected data of the eye diagram object h
with the input x.

If the RefreshPlot property is set to 'on', the update method also
refreshes the eye diagram figure.

The following example shows this method’s use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off')

% Prepare a noisy sinusoidal as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+j*cos(2*pi*(0:1/100:10)), 20);
% update the eyediagram
update(h, x);
% Check the number of proccessed samples
h.SamplesProcessed

plot

This method displays the eye diagram figure.

The plot method has three usage cases:

plot(h) plots the eye diagram for the eye diagram object h with the
current colormap or the default linespec.

plot(h,cmap), when used with the plottype set to '2D Color' or '3D
Color', plots the eye diagram for the object h, and sets the colormap
to cmap.

plot(h,linespec), when used with the plottype set to '2D Line',
plots the eye diagram for the object h using linespec as the line
specification. See the help for plot for valid linespecs.

The following example shows this method’s use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Prepare a noisy sinusoid as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+ ...

j*0.5*cos(2*pi*(0:1/100:10)), 20);
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% Update the eye diagram
update(h, x);
% Display the eye diagram figure
plot(h)

% Display the eye diagram figure with jet colormap
plot(h, jet(64))

% Display 2D Line eye diagram with red dashed lines
h.PlotType = '2D Line';
plot(h, 'r--')

exportdata

This method exports the eye diagram data.

[VERHIST EYEL HORHISTX HORHISTRF] = EXPORTDATA(H) Exports the
eye diagram data collected by the eyediagram object H.

VERHIST is a matrix that holds the vertical histogram, which is also
used to plot ’2D Color’ and ’3D Color’ eye diagrams.

EYEL is a matrix that holds the data used to plot 2D Line eye diagram.
Each row of the EYEC holds one trace of the input signal.

HORHISTX is a matrix that holds the crossing point histogram data
collected for the values defined by the CrossingAmplitudes property
of the MeasurementSetup object. HORHISTX(i, :) represents the
histogram for CrossingAmplitudes(i).

HORHISTRF is a matrix that holds the crossing point histograms for rise
and fall time levels. HORHISTRF(i,:) represents the histogram for
AmplitudeThreshold(i).

The following example shows this method’s use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
% Prepare a noisy sinusoidal as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+ ...

j*0.5*cos(2*pi*(0:1/100:10)), 20);
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% Update the eyediagram
update(h, x);
% Export the data
[eyec eyel horhistx horhistrf] = exportdata(h);
% Plot line data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
plot(t, real(eyel)); xlabel('time (s)'); ylabel('Amplitude (AU)');
% Plot 2D Color data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
a=h.MinimumAmplitude:h.AmplitudeResolution:h.MaximumAmplitude;
imagesc(t,a,eyec); xlabel('time (s)'); ylabel('Amplitude (AU)');

reset

This method resets the eye diagram object.

reset(h) resets the eye diagram object h. Resetting h clears all the
collected data.

The following example shows this method’s use:

% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
% Prepare a noisy sinusoidal as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+ ...

j*0.5*cos(2*pi*(0:1/100:10)), 20);
update(h, x); % update the eyediagram
h.SamplesProcessed % Check the number of proccessed samples
reset(h); % reset the object
h.SamplesProcessed % Check the number of proccessed samples

copy

This method copies the eye diagram object.

h = copy(ref_obj) creates a new eye diagram object h and copies the
properties of object h from properties of ref_obj.

The following example shows this method’s use:
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% Create an eye diagram scope object
h = commscope.eyediagram('MinimumAmplitude', -3, ...

'MaximumAmplitude', 3);
disp(h); % display object properties
h1 = copy(h)

disp

This method displays properties of the eye diagram object.

disp(h) displays relevant properties of eye diagram object h.

If a property is not relevant to the object’s configuration, it is not
displayed. For example, for a commscope.eyediagram object, the
ColorScale property is not relevant when PlotType property is set to
'2D Line'. In this case the ColorScale property is not displayed.

The following is an example of its use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Display object properties
disp(h);
h = commscope.eyediagram('PlotType', '2D Line')

close

This method closes the eye diagram object figure.

close(h) closes the figure of the eye diagram object h.

The following example shows this method’s use:

% Create an eye diagram scope object
h = commscope.eyediagram;
% Call the plot method to display the scope
plot(h);
% Wait for 1 seconds
pause(1)
% Close the scope
close(h)
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analyze

This methods executes eye diagram measurements. ANALYZE(H)
executes the eye diagram measurements on the collected data of the eye
diagram scope object H. The results of the measurements are stored in
the Measurements property of H. See “Measurements” on page 2-89
for more information.

Measurements You can obtain the following measurements on an eye diagram:

• Amplitude Measurements

- Eye Amplitude

- Eye Crossing Amplitude

- Eye Crossing Percentage

- Eye Height

- Eye Level

- Eye SNR

- Quality Factor

- Vertical Eye Opening

• Time Measurements

- Deterministic Jitter

- Eye Crossing Time

- Eye Delay

- Eye Fall Time

- Eye Rise Time

- Eye Width

- Horizontal Eye Opening

- Peak-to-Peak Jitter
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- Random Jitter

- RMS Jitter

- Total Jitter

The deterministic jitter, horizontal eye opening, quality factor, random
jitter, and vertical eye opening measurements utilize a dual-Driac
algorithm. Jitter is the deviation of a signal’s timing event from its
intended (ideal) occurrence in time [1]. Jitter can be represented with a
dual-Driac model. A dual-Driac model assumes that the jitter has two
components: deterministic jitter (DJ) and random jitter (RJ). The DJ
PDF comprises two delta functions, one at μ L and one at μ R. The RJ
PDF is assumed to be Gaussian with zero mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which
is composed of two Gaussian curves with variance σ and mean values
μ L and μ R. See the following figure.
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The dual-Dirac model is described in [5] in more detail. The amplitude
of the two Dirac functions may not be the same. In such a case, the
analyze method estimates these amplitudes, ρ L and ρ R.

Amplitude Measurements

You can use the vertical histogram to obtain a variety of amplitude
measurements. For complex signals, measurements are done on both
in-phase and the quadrature components, unless otherwise specified.
For amplitude measurements, at least one bin per vertical histogram
must reach 10 hits before the measurement is taken, ensuring higher
accuracy.
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Eye Amplitude (EyeAmplitude)
Eye Amplitude, measured in Amplitude Units (AU), is defined as the
distance between two neighboring eye levels. For an NRZ signal, there
are only two levels: the high level (level 1 in figure) and the low level
(level 0 in figure). The eye amplitude is the difference of these two
values, as shown in figure [3].

Eye Crossing Amplitude (EyeCrossingLevel)
Eye crossing amplitudes are the amplitude levels at which the eye
crossings occur, measured in Amplitude Units (AU). The analyze
method calculates this value using the mean value of the vertical
histogram at the crossing times [3]. See the following figure.
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The next figure shows the vertical histogram at the first eye crossing
time.

Eye Crossing Percentage (EyeOpeningVer)
Eye Crossing Percentage is the location of the eye crossing levels as a
percentage of the eye amplitude.
Eye Height (EyeHeight)
Eye Height, measured in Amplitude Units (AU), is defined as the 3σ
distance between two neighboring eye levels.
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For an NRZ signal, there are only two levels: the high level (level 1
in figure) and the low level (level 0 in figure). The eye height is the
difference of the two 3σ points, as shown in the next figure. The 3σ point
is defined as the point that is three standard deviations away from
the mean value of a PDF.

Eye Level (EyeLevel)
Eye Level is the amplitude level used to represent data bits, measured
in Amplitude Units (AU).

For an ideal NRZ signal, there are two eye levels: +A and –A. The
analyze method calculates eye levels by estimating the mean value
of the vertical histogram in a window around the EyeDelay, which
is also the 50% point between eye crossing times [3]. The width of
this window is determined by the EyeLevelBoundary property of the
eyemeasurementsetup object, shown in the next figure.
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The analyze method calculates the mean value of all the vertical
histograms within the eye level boundaries. The mean vertical
histogram appears in the following figure. There are two distinct PDFs,
one for each eye level. The mean values of the individual histograms
are the eye levels as shown in this figure.

Eye SNR (EyeSNR)
Eye signal-to-noise ratio is defined as the ratio of the eye amplitude
to the sum of the standard deviations of the two eye levels. It can be
expressed as:
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SNR = L L1 0

1 0

−
+σ σ

where L1 and L0 represent eye level 1 and 0, respectively, and σ 1 and
σ 2 are the standard deviation of eye level 1 and 0, respectively.

For an NRZ signal, eye level 1 corresponds to the high level, and the eye
level 0 corresponds to low level.
Quality Factor (QualityFactor)
The analyze method calculates Quality Factor the same way as the
eye SNR. However, instead of using the mean and standard deviation
values of the vertical histogram for L1 and σ 1, the analyze method uses
the mean and standard deviation values estimated using the dual-Dirac
method. [2] See dual-Dirac section for more detail.
Vertical Eye Opening (EyeOpeningVer)
Vertial Eye Opening is defined as the vertical distance between
two points on the vertical histogram at EyeDelay that corresponds
to the BER value defined by the BERThreshold property of the
eyemeasurementsetup object. The analyze method calculates this
measurement taking into account the random and deterministic
components using a dual-Dirac model [5] (see the Dual Dirac Section).
A typical BER value for the eye opening measurements is 10-12, which
approximately corresponds to the 7σ point assuming a Gaussian
distribution.

Time Measurements

You can use the horizontal histogram of an eye diagram to obtain a
variety of timing measurements. For time measurements, at least
one bin per horizontal histogram must reach 10 hits before the
measurement is taken.
Deterministic Jitter (DeterminnisticJitter)
Deterministic Jitter is the deterministic component of the jitter. You
calculate it using the tail mean value, which is estimated using the
dual-Dirac method as follows [5]:
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DJ = μ L — μ R
where μ L and μ R are the mean values returned by the dual-Dirac
algorithm.
Eye Crossing Time (EyeCrossingTime)
Eye crossing times are calculated as the mean of the horizontal
histogram for each crossing point, around the reference amplitude level.
This value is measured in seconds. The mean value of all the horizontal
PDFs is calculated in a region defined by the CrossingBandWith
property of the eyemeasurementsetup object.

The region is from -Atotal* BW to +Atotal* BW, where Atotal is the total
amplitude range of the eye diagram (i.e., A total = A max — Amin) and BW
is the crossing band width, shown in the following figure.

The following figure shows the average PDF in this region. Because this
example assumes two symbols per trace, there are two crossing points.
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Eye Delay (EyeDelay)
Eye Delay is the distance from the midpoint of the eye to the time
origin, measured in seconds. The analyze method calculates this
distance using the crossing time. For a symmetric signal, EyeDelay is
also the best sampling point.

Eye Fall Time (EyeFallTime)
Eye Fall Time is the mean time between the high and low
threshold values defined by the AmplitudeThreshold property of the
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eyemeasurementsetup object. The previous figure shows the fall time
calculated from 10% to 90% of the eye amplitude.
Eye Rise Time (EyeRiseTime)
Eye Rise Time is the mean time between the low and high
threshold values defined by the AmplitudeThreshold property of the
eyemeasurementsetup object. The following figure shows the rise time
calculated from 10% to 90% of the eye amplitude.

Eye Width (EyeWidth)
Eye Width is the horizontal distance between two points that are three
standard deviations (3σ ) from the mean eye crossing times, towards the
center of the eye. The value for Eye Width measurements is seconds.
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Horizontal Eye Opening (EyeOpeningHor)
Horizontal Eye Opening is the horizontal distance between two points
on the horizontal histogram that correspond to the BER value defined
by the BERThreshold property of the eyemeasurementsetup object.
The measurement is take at the amplitude value defined by the
ReferenceAmplitude property of the eyemeasurementsetup object.
It is calculated taking into account the random and deterministic
components using a dual-Dirac model [5] (see the Dual Dirac Section).

A typical BER value for the eye opening measurements is 10-12, which
approximately corresponds to the 7σ point assuming a Gaussian
distribution.
Peak-to-Peak Jitter (JitterP2P)
Peak-To-Peak Jitter is the difference between the extreme data points of
the histogram.
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Random Jitter (RandomJitter)
Random Jitter is defined as the Gaussian unbounded component of
the jitter. The analyze method calculates it using the tail standard
deviation estimated using the dual-Dirac method as follows [5]:

RJ = (QL + QR) * σ

where

QL = 2
21*

*
erfc

BER

L

− ⎛

⎝
⎜

⎞

⎠
⎟ρ

and QR = 2
21*

*
erfc

BER

R

− ⎛

⎝
⎜

⎞

⎠
⎟ρ

BER is the bit error ratio at which the random jitter is calculated. It is
defined with the BERThreshold property of the eyemeasuremensetup
object.
RMS Jitter (JitterRMS)
RMS Jitter is the standard deviation of the jitter calculated from the
horizontal histogram.
Total Jitter (TotalJitter)
Total Jitter is the sum of the random jitter and the deterministic jitter
[5].

Measurement
Setup
Parameters

A number of set-up parameters control eye diagram measurements.
This section describes these set-up parameters and the measurements
they affect.

Eye Level Boundaries

Eye Level Boundaries are defined as a percentage of the symbol
duration. The analyze method calculates the eye levels by averaging the
vertical histogram within a given time interval defined by the eye level
boundaries. A common value you can use for NRZ signals is 40% to 60%.
For RZ signals, a narrower band of 5% is more appropriate. See Eye
Level for more information. The default setting for Eye level Boundaries
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is a 2x1 vector where the first element is the lower boundary and the
second element is the upper boundary.

Reference Amplitude

Reference Amplitude is the boundary value at which point the signal
crosses from one signal level to another. Reference amplitude represents
the decision boundary of the modulation scheme. This value is used
to perform jitter measurements. The default setting for Reference
Amplitude is a 2x1 double vector where the first element is the lower
boundary and the second element is the upper boundary.

The crossing instants of the input signal are detected and recorded as
crossing times. A common value you can use for NRZ signals is 0. For
RZ signals, you can use the mean value of 1 and 0 levels. Reference
amplitude is stored in a 2-by-N matrix, where the first row is the
in-phase values and second row is the quadrature values. See Eye
Crossing Time for more information.

Crossing Bandwidth

Crossing Bandwidth is the amplitude band used to measure the
crossing times of the eye diagram. Crossing Bandwidth represents
a percentage of the amplitude span of the eye diagram, typically 5%.
See Eye Crossing Time for more information. The default setting for
Crossing Bandwidth is 0.0500.

Bit Error Rate Threshold

The eye opening measurements, random, and total jitter measurements
are performed at a given BER value. This BER value defines the BER
threshold. A typical value is 1e-12. The default setting for Bit Error
Threshold is 1.0000e-12

Amplitude Threshold

The rise time of the signal is defined as the time required for the
signal to travel from lower amplitude threshold to the upper amplitude
threshold. The fall time, measured from the upper amplitude threshold
to the lower amplitude threshold, is defined as a percentage of the eye
amplitude. The default setting is 10% for the lower threshold and 90%
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for the upper threshold. See Eye Rise Time and Eye Fall Time for more
information.

Jitter Hysteresis

You can use the JitterHysteresis property of the eyemeasurementsetup
object to remove the effect of noise from the horizontal histogram
estimation. The default value for Jitter Hysteresis is zero.

If channel noise impairs the signal being tested, as shown in the
following figure, the signal may seem like it crosses the reference
amplitude level multiple times during a single 0-1 or 1-0 transition.

See the zoomed—in image for more detail.
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To eliminate the effect of noise, define a hysteresis region between two
threshold values: Aref + ΔA and Aref - ΔA, where Aref is the reference
amplitude value and ΔA is the jitter hysteresis value. If the signal
crosses both threshold values, level crossing is declared. Then, linear
interpolation calculates the crossing point in the horizontal histogram
estimation.

Examples % Construct an eye diagram object for signals in the range
% of [-3 3]
h = commscope.eyediagram('MinimumAmplitude', -3, ...

'MaximumAmplitude', 3)

% Construct an eye diagram object for a signal with
% 1e-3 seconds of transient time
h = commscope.eyediagram('MeasurementDelay', 1e-3)

% Construct an eye diagram object for '2D Line' plot type
% with 100 traces to display
h = commscope.eyediagram('PlotType', '2D Line', ...

'NumberOfStoredTraces', 100)
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See Also commscope

References [1] Nelson Ou, et al, Models for the Design and Test of Gbps-Speed
Serial Interconnects,IEEE Design & Test of Computers, pp. 302-313,
July-August 2004.

[2] HP E4543A Q Factor and Eye Contours Application Software,
Operating Manual, http://agilent.com

[3] Agilent 71501D Eye-Diagram Analysis, User’s Guide,
http://www.agilent.com

[4] 4] Guy Foster, Measurement Brief: Examining Sampling Scope
Jitter Histograms,White Paper, SyntheSys Research, Inc., July 2005.

[5] Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale,White
Paper, Agilent Technologies, December 2004, http://www.agilent.com
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Purpose Construct pattern generator object

Syntax h = commsrc.pattern

Description h = commsrc.pattern constructs a pattern generator object, h. This
syntax is equivalent to:

h = COMMSRC.PATTERN('SamplingFrequency', 10000, ...
'SamplesPerSymbol', 100, ...
'PulseType', 'NRZ', ...
'OutputLevels', [-1 1], ...
'RiseTime', 0, ...
'FallTime', 0, ...
'DataPattern', 'PRBS7', ...
'Jitter', commsrc.combinedjitter)

The pattern generator object produces modulated data patterns. This
object can also inject jitter into the modulated signal.

Properties A pattern generator object has the properties shown on the following
table. You can edit all properties, except those explicitly noted
otherwise.

Property Description

Type Type of pattern generator object
('Pattern Generator'). This property
is not writable.

SamplingFrequency Sampling frequency of the input signal
in hertz.

SymbolRate The symbol rate of the input
signal. This property depends
upon the SamplingFequency and
SamplesPerSymbol properties. This
property is not writable.
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Property Description

SamplesPerSymbol The number of samples representing
a symbol. SamplesPerSymbol must
be an integer. This property affects
SymbolRate.

PulseType The type of pulse the object generates.
Pulse types available: return-to-zero
(RZ) and nonreturn-to-zero (NRZ).

OutputLevels The amplitude levels corresponding to
the logical low and high values of the
pulse.

DutyCycle The duty cycle of the pulse the object
generates. Displays calculated duty
cycle based on pulse parameters. This
property is not writable.

RiseTime Specifies 10% to 90% rise time of the
pulse in seconds.

PulseDuration Pulse duration in seconds defined by
IEEE STD 181 standard. (See the
Return-to-Zero (RZ) Signal Conversion:
Ideal Pulse to STD–181 figure in the
Methods section.) Setting PulseType to
return-to-zero enables this property.

FallTime Specifies 10% to 90% fall time of the
pulse in seconds.

DataPattern The bit sequence the object uses. The
following patterns are available: PRBS5
to PRBS15, PRBS23, PRBS31, and User
Defined.
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Property Description

UserDataPattern User-defined bit pattern consisting of a
vector of ones and zeroes. Setting data
pattern to user defined enables this
property.

Jitter Specifies jitter characteristics. Use this
property to configure Random, Periodic
and Dual Dirac Jitter.

Methods A pattern generator object has five methods, as described in this section.

generate

This method outputs a frame worth of modulated and interpolated
symbols. It has one input argument, which is the number of symbols in
a frame. Its output is a double-column vector. You can call this method
using the following syntax

x = generate(h, N)

where h is the handle to the object, N is the number of output symbols,
and x is a double-column vector.

reset

This method resets the pattern generator to its default state. The
property values do not reset unless they relate to the state of the object.
This method has no input arguments.

idealtostd181

This method converts the ideal pulse specifications to IEEE STD-181
specifications: 0% to 100% rise time (TR) and fall time (TF) convert to
10% to 90% rise and fall times with a 50% pulse width duration, as
shown in the following figure. This method also sets the appropriate
properties.

idealtostd181(tR, tF, PW)
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90%

Reference level

tR tF

Pulse duration

Tsym

50%

10%

IEEE STD-181 Return-to-Zero (RZ) Signal Parameters

std181toideal

This method converts the IEEE STD-181 pulse specifications, stored
in the pattern generator, to ideal pulse specifications. This method
converts the 10% to 90% rise and fall times to 0% to 100% rise and fall
times (TR and TF). It also converts the 50% pulse duration to pulse
width (as shown in the following figure). Use the property values for
IEEE STD-181 specifications

[tr tf pw] = stdstd181toideal(h)

where h is the pattern generator object handle and tR is 0 to 100% rise
time.
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Symbol
boundary
level

PW+

PW-

tR tF

Tsym Tsym

Ideal Pulse Non-Return-to-Zero (NRZ) Signal Parameters

computedcd

Computes the duty cycle distortion, DCD, of the pulse defined by the
pattern generator object h.

DCD represents the ratio of the pulse on duration to the pulse off
duration. For an NRZ pulse, on duration is the duration the pulse
spends above the symbol boundary level. Off duration is the duration
the pulse spends below zero.

dcd = computedcd(h)

The software calculates DCD given tR, tF, Tsym. This formula assumes
that the symbol boundary level is zero.

Th = (Ah-Al) *
t
A
R

l
+ (Ah-Al) *

t
A
F

l
+ PW+

Tl = (Ah-Al) *
t
A
R

l
+ (Ah-Al) *

t
A
F

l
+ PW-

DCD = T
T

h

l
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Where Th is the duration of the high signal, Tl is the duration of the low
signal, and DCD represents the ratio of the duration of the high signal
to the low signal.
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Purpose Source code mu-law or A-law compressor or expander

Syntax out = compand(in,param,v)
out = compand(in,Mu,v,'mu/compressor')
out = compand(in,Mu,v,'mu/expander')
out = compand(in,A,v,'A/compressor')
out = compand(in,A,v,'A/expander')

Description out = compand(in,param,v) implements a µ-law compressor for the
input vector in. Mu specifies µ, and v is the input signal’s maximum
magnitude. out has the same dimensions and maximum magnitude
as in.

out = compand(in,Mu,v,'mu/compressor') is the same as the syntax
above.

out = compand(in,Mu,v,'mu/expander') implements a µ-law
expander for the input vector in. Mu specifies µ and v is the input
signal’s maximum magnitude. out has the same dimensions and
maximum magnitude as in.

out = compand(in,A,v,'A/compressor') implements an A-law
compressor for the input vector in. The scalar A is the A-law parameter,
and v is the input signal’s maximum magnitude. out is a vector of the
same length and maximum magnitude as in.

out = compand(in,A,v,'A/expander') implements an A-law expander
for the input vector in. The scalar A is the A-law parameter, and v is
the input signal’s maximum magnitude. out is a vector of the same
length and maximum magnitude as in.

Note The prevailing parameters used in practice are µ= 255 and
A = 87.6.

Examples The examples below illustrate the fact that compressors and expanders
perform inverse operations.
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compressed = compand(1:5,87.6,5,'a/compressor')
expanded = compand(compressed,87.6,5,'a/expander')

The output is

compressed =

3.5296 4.1629 4.5333 4.7961 5.0000

expanded =

1.0000 2.0000 3.0000 4.0000 5.0000

Algorithm For a given signal x, the output of the µ-law compressor is

y
V x V

x=
+
+

log( / )
log( )

sgn( )
1

1
μ
μ

where V is the maximum value of the signal x, µ is the µ-law parameter
of the compander, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

The output of the A-law compressor is
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where A is the A-law parameter of the compander and the other
elements are as in the µ-law case.

See Also quantiz, dpcmenco, dpcmdeco, “Companding a Signal”
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References [1] Sklar, Bernard, Digital Communications: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1988.
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Purpose Restore ordering of symbols using shift registers

Syntax deintrlved = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope,

init_state)

Description deintrlved = convdeintrlv(data,nrows,slope) restores the
ordering of elements in data by using a set of nrows internal shift
registers. The delay value of the kth shift register is (nrows-k)*slope,
where k = 1, 2, 3,..., nrows. Before the function begins to process data, it
initializes all shift registers with zeros. If data is a matrix with multiple
rows and columns, the function processes the columns independently.

[deintrlved,state] = convdeintrlv(data,nrows,slope) returns a
structure that holds the final state of the shift registers. state.value
stores any unshifted symbols. state.index is the index of the next
register to be shifted.

[deintrlved,state] =
convdeintrlv(data,nrows,slope,init_state) initializes the shift
registers with the symbols contained in init_state.value and
directs the first input symbol to the shift register referenced by
init_state.index. The structure init_state is typically the
state output from a previous call to this same function, and is
unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the convintrlv function, use
the same nrows and slope inputs in both functions. In that case, the
two functions are inverses in the sense that applying convintrlv
followed by convdeintrlv leaves data unchanged, after you take their
combined delay of nrows*(nrows-1)*slope into account. To learn more
about delays of convolutional interleavers, see “Delays of Convolutional
Interleavers”.
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Examples The example in “Effect of Delays on Recovery of Convolutionally
Interleaved Data” uses convdeintrlv and illustrates how you can
handle the delay of the interleaver/deinterleaver pair when recovering
data.

The example on the reference page for muxdeintrlv illustrates how to
use the state output and init_state input with that function; the
process is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also convintrlv, muxdeintrlv, “Interleaving”
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Purpose Convolutionally encode binary data

Syntax code = convenc(msg,trellis)
code = convenc(msg,trellis,puncpat)
code = convenc(msg,trellis,...,init_state)
[code,final_state] = convenc(...)

Description code = convenc(msg,trellis) encodes the binary vector msg
using the convolutional encoder whose MATLAB trellis structure is
trellis. For details about MATLAB trellis structures, see “Trellis
Description of a Convolutional Encoder”. Each symbol in msg consists of
log2(trellis.numInputSymbols) bits. The vector msg contains one or
more symbols. The output vector code contains one or more symbols,
each of which consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,puncpat) is the same as the syntax
above, except that it specifies a puncture pattern, puncpat, to allow
higher rate encoding. puncpat must be a vector of 1s and 0s, where the
0s indicate the punctured bits. puncpat must have a length of at least
log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,...,init_state) allows the encoder
registers to start at a state specified by init_state. init_state is
an integer between 0 and trellis.numStates-1 and must be the last
input parameter. To use the default value for init_state, specify it
as 0 or [].

[code,final_state] = convenc(...) encodes the input message
and also returns the encoder’s state in final_state. final_state has
the same format as init_state.

Examples The command below encodes five two-bit symbols using a rate 2/3
convolutional code. A schematic of this encoder is on the poly2trellis
reference page.

code1 = convenc(randint(10,1,2,123),...
poly2trellis([5 4],[23 35 0; 0 5 13]));
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The commands below define the encoder’s trellis structure explicitly
and then use convenc to encode 10 one-bit symbols. A schematic of this
encoder is in “Trellis Description of a Convolutional Encoder”.

trel = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randint(10,1),trel);

The commands below illustrate how to use the final state and initial
state arguments when invoking convenc repeatedly. Notice that
[code3; code4] is the same as the earlier example’s output, code1.

trel = poly2trellis([5 4],[23 35 0; 0 5 13]);
msg = randint(10,1,2,123);
% Encode part of msg, recording final state for later use.
[code3,fstate] = convenc(msg(1:6),trel);
% Encode the rest of msg, using state as an input argument.
code4 = convenc(msg(7:10),trel,fstate);

Examples For some commonly used puncture patterns for specific rates and
polynomials, see the last three references.

See Also distspec, vitdec, poly2trellis, istrellis, vitsimdemo,
“Convolutional Coding”

References [1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for
Digital Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein,
Data Communications Principles, New York, Plenum, 1992.

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft
decision Viterbi decoding,” IEEE Transactions on Communications, vol.
COM-32, No. 3, pp 315–319, Mar. 1984.
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[4] Haccoun, D., and G. Begin, “High-rate punctured convolutional
codes for Viterbi and sequential decoding,” IEEE Transactions on
Communications, vol. 37, No. 11, pp 1113–1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured
convolutional codes for Viterbi and sequential decoding,” IEEE
Transactions on Communications, vol. 38, No. 11, pp 1922–1928, Nov.
1990.
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Purpose Permute symbols using shift registers

Syntax intrlved = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope,init_state)

Description intrlved = convintrlv(data,nrows,slope) permutes the elements
in data by using a set of nrows internal shift registers. The delay
value of the kth shift register is (k-1)*slope, where k = 1, 2, 3,...
nrows. Before the function begins to process data, it initializes all
shift registers with zeros. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

[intrlved,state] = convintrlv(data,nrows,slope) returns a
structure that holds the final state of the shift registers. state.value
stores any unshifted symbols. state.index is the index of the next
register to be shifted.

[intrlved,state] = convintrlv(data,nrows,slope,init_state)
initializes the shift registers with the symbols contained in
init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is
typically the state output from a previous call to this same function,
and is unrelated to the corresponding deinterleaver.

Examples The example below shows that convintrlv is a special case of the more
general function muxintrlv. Both functions yield the same numerical
results.

x = randint(100,1); % Original data
nrows = 5; % Use 5 shift registers
slope = 3; % Delays are 0, 3, 6, 9, and 12.
y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.
delay = [0:3:12]; % Another way to express set of delays
y1 = muxintrlv(x,delay); % Interleave using muxintrlv.
isequal(y,y1)
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The output below shows that y, obtained using convintrlv, and y1,
obtained using muxintrlv, are the same.

ans =

1

Another example using this function is in “Effect of Delays on Recovery
of Convolutionally Interleaved Data”.

The example on the muxdeintrlv reference page illustrates how to use
the state output and init_state input with that function; the process
is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also convdeintrlv, muxintrlv, helintrlv, “Interleaving”
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Purpose Convolution matrix of Galois field vector

Syntax A = convmtx(c,n)

Description A convolution matrix is a matrix, formed from a vector, whose inner
product with another vector is the convolution of the two vectors.

A = convmtx(c,n) returns a convolution matrix for the Galois vector
c. The output A is a Galois array that represents convolution with c in
the sense that conv(c,x) equals

• A*x, if c is a column vector and x is any Galois column vector of
length n. In this case, A has n columns and m+n-1 rows.

• x*A, if c is a row vector and x is any Galois row vector of length n. In
this case, A has n rows and m+n-1 columns.

Examples The code below illustrates the equivalence between using the conv
function and multiplying by the output of convmtx.

m = 4;
c = gf([1; 9; 3],m); % Column vector
n = 6;
x = gf(randint(n,1,2^m),m);
ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True
ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True

The output is

ck1 =

1

ck2 =

1
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See Also conv, “Signal Processing Operations in Galois Fields”
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Purpose Produce cyclotomic cosets for Galois field

Syntax cst = cosets(m)

Description cst = cosets(m) produces cyclotomic cosets mod 2^m-1. Each element
of the cell array cst is a Galois array that represents one cyclotomic
coset.

A cyclotomic coset is a set of elements that share the same minimal
polynomial. Together, the cyclotomic cosets mod 2^m-1 form a partition
of the group of nonzero elements of GF(2^m). For more details on
cyclotomic cosets, see the works listed in “References” on page 2-125.

Examples The commands below find and display the cyclotomic cosets for GF(8).
As an example of interpreting the results, c{2} indicates that A, A2,
and A2 + A share the same minimal polynomial, where A is a primitive
element for GF(8).

c = cosets(3);
c{1}'
c{2}'
c{3}'

The output is below.

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

2 4 6
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ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

3 5 7

See Also minpol

References [1] Blahut, Richard E., Theory and Practice of Error Control Codes,
Reading, MA, Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Englewood Cliffs, NJ, Prentice-Hall,
1983.
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Purpose Construct CRC detector object

Syntax h= crc.detector(polynomial)

h= crc.detector(generatorObj)

h= crc.detector(`Polynomial', polynomial, `param1', val1,
etc.)

h= crc.detector

Description h= crc.detector(polynomial) constructs a CRC detector object H
defined by the generator polynomial POLYNOMIAL

h= crc.detector(generatorObj) constructs a CRC detector object
H defined by the parameters found in the CRC generator object
GENERATOROBJ

h= crc.detector(`property1', val1, ...) constructs a CRC
detector object H with properties as specified by PROPERTY/VALUE
pairs.

h= crc.detector constructs a CRC detector object H with default
properties. It constructs a CRC-CCITT detector, and is equivalent to:

h= crc.detector('Polynomial', '0x1021', 'InitialState',
'0xFFFF', 'ReflectInput', ...

false, 'ReflectRemainder', false, 'FinalXOR', '0x0000')

Properties

The following table describes the properties of a CRC detector object.
All properties are writable, except Type.

Property Description

Type Specifies the object as a ’CRC
Detector’.
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Property Description

Polynomial The generator polynomial that
defines connections for a linear
feedback shift register. This
property can be specified as
a binary vector representing
descending powers of the
polynomial. In this case, the
leading ’1’ of the polynomial
must be included. It can also be
specified as a string, prefaced
by ’0x’, that is a hexadecimal
representation of the descending
powers of the polynomial. In
this case, the leading ’1’ of the
polynomial is omitted.

InitialState The initial contents of the
shift register. This property
can be specified as a binary
scalar, a binary vector, or as a
string, prefaced by ’0x’, that is a
hexadecimal representation of the
binary vector. As a binary vector,
its length must be one less than
the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies
whether the input data should be
flipped on a bytewise basis prior
to entering the shift register.
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Property Description

ReflectRemainder A Boolean quantity that specifies
whether the binary output CRC
checksum should be flipped
around its center after the input
data is completely through the
shift register.

FinalXOR The value with which the CRC
checksum is to be XORed just
prior to being appended to
the input data. This property
can be specified as a binary
scalar, a binary vector or as a
string, prefaced by ’0x’, that is a
hexadecimal representation of the
binary vector. As a binary vector,
its length must be one less than
the length of the binary vector
representation of the Polynomial.

A detect method is used with the object to detect errors in digital
transmission.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to
the Cyclic Redundancy Check Coding section of the Communications
Toolbox™ User’s Guide.

Detector Method

[OUTDATA ERROR] = DETECT(H, INDATA) detects transmission errors
in the encoded input message INDATA by regenerating a CRC checksum
using the CRC detector object H. The detector then compares the
regenerated checksum with the checksum appended to INDATA. The
binary-valued INDATA can be either a column vector or a matrix. If
it is a matrix, each column is considered to be a separate channel.
OUTDATA is identical to the input message INDATA, except that it
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has the CRC checksum stripped off. ERROR is a 1xC logical vector
indicating if the encoded message INDATA has errors, where C is the
number of channels in INDATA. An ERROR value of 0 indicates no
errors, and a value of 1 indicates errors.

Usage
Examples

The following three examples demonstrate the use of constructing an
object. The fourth example demonstrates use of the detect method.

% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1:
h = crc.detector([1 1 1 1 1])

% Construct a CRC detector with a polynomial
% defined by x^3+x+1, with
% zero initial states, and with an all-ones
% final XOR value:
h = crc.detector('Polynomial', [1 0 1 1], ...
'InitialState', [0 0 0], 'FinalXOR', [1 1 1])

% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1,
% all-ones initial states, reflected input, and all-zeros
% final XOR value:

h = crc.detector('Polynomial', '0xF', 'InitialState', ...
'0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the
% ASCII sequence '123456789'.
% Introduce an error, then detect it
% using a CRC-16 CRC detector.
gen = crc.generator('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
det = crc.detector('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
% The message below is an ASCII representation
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% of the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);
encoded(1) = ~encoded(1); % Introduce an error
[outdata error] = detect(det, encoded); % Detect the error
noErrors = isequal(msg, outdata) % Should be 0
error % Should be 1

See Also crc.generator
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Purpose Construct CRC generator object

Syntax h = crc.generator(polynomial)

h = crc.generator(detectorObj)

h = crc.generator(`Polynomial', polynomial, `param1', val1,
etc.)

h = crc.generator

Description h = crc.generator(polynomial) constructs a CRC generator object H
defined by the generator polynomial POLYNOMIAL.

h = crc.generator(detectorObj) constructs a CRC generator
object H defined by the parameters found in the CRC detector object
DETECTOROBJ.

h = crc.generator(`property1', val1, ...) constructs
a CRC generator object H with properties as specified by the
PROPERTY/VALUE pairs.

h = crc.generator constructs a CRC generator object H with default
properties. It constructs a CRC-CCITT generator, and is equivalent to:
h = crc.generator(’Polynomial’, ’0x1021’, ’InitialState’, ’0xFFFF’, ...

’ReflectInput’, false, ’ReflectRemainder’, false, ’FinalXOR’, ’0x0000’).

Properties

The following table describes the properties of a CRC generator object.
All properties are writable, except Polynomial.
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Property Description

Polynomial The generator polynomial that
defines connections for a linear
feedback shift register. This
property can be specified as
a binary vector representing
descending powers of the
polynomial. In this case, the
leading ’1’ of the polynomial
must be included. It can also be
specified as a string, prefaced
by ’0x’, that is a hexadecimal
representation of the descending
powers of the polynomial. In
this case, the leading ’1’ of the
polynomial is omitted.

InitialState The initial contents of the
shift register. This property
can be specified as a binary
scalar, a binary vector, or as a
string, prefaced by ’0x’, that is a
hexadecimal representation of the
binary vector. As a binary vector,
its length must be one less than
the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies
whether the input data should be
flipped on a bytewise basis prior
to entering the shift register.
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Property Description

ReflectRemainder A Boolean quantity that specifies
whether the binary output CRC
checksum should be flipped
around its center after the input
data is completely through the
shift register.

FinalXOR The value with which the CRC
checksum is to be XORed just
prior to being appended to
the input data. This property
can be specified as a binary
scalar, a binary vector, or as a
string, prefaced by ’0x’, that is a
hexadecimal representation of the
binary vector. As a binary vector,
its length must be one less than
the length of the binary vector
representation of the Polynomial.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to
the Cyclic Redundancy Check Coding section of the Communications
Toolbox User’s Guide.

Generator Method

encoded = generate(h, msg) generates a CRC checksum for an input
message using the CRC generator object H. It appends the checksum
to the end of MSG. The binary-valued MSG can be either a column
vector or a matrix. If it is a matrix, then each column is considered
to be a separate channel.

Usage Example

The following examples demonstrate the use of this object.
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% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1:
h = crc.generator([1 1 1 1 1])

% Construct a CRC generator with a polynomial defined
% by x^3+x+1, with zero initial states,
% and with an all-ones final XOR value:
h = crc.generator('Polynomial', [1 0 1 1], ...

'InitialState', [0 0 0], ...
'FinalXOR', [1 1 1])

% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1, all-ones initial states, reflected
% input, and all-zeros final XOR value:
h = crc.generator('Polynomial', '0xF', 'InitialState', ...
'0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the ASCII sequence '123456789'.
gen = crc.generator('Polynomial', '0x8005', ...
'ReflectInput', true, 'ReflectRemainder', true);
% The message below is an ASCII representation of ...
% the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);

See Also crc.detector
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Purpose Produce parity-check and generator matrices for cyclic code

Syntax h = cyclgen(n,pol)
h = cyclgen(n,pol,opt)
[h,g] = cyclgen(...)
[h,g,k] = cyclgen(...)

Description For all syntaxes, the codeword length is n and the message length is k.
A polynomial can generate a cyclic code with codeword length n and
message length k if and only if the polynomial is a degree-(n-k) divisor
of x^n-1. (Over the binary field GF(2), x^n-1 is the same as x^n+1.) This
implies that k equals n minus the degree of the generator polynomial.

h = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a
systematic binary cyclic code having codeword length n. The row vector
pol gives the binary coefficients, in order of ascending powers, of the
degree-(n-k) generator polynomial.

h = cyclgen(n,pol,opt) is the same as the syntax above, except that
the argument opt determines whether the matrix should be associated
with a systematic or nonsystematic code. The values for opt are
'system' and 'nonsys'.

[h,g] = cyclgen(...) is the same as h = cyclgen(...), except that
it also produces the k-by-n generator matrix g that corresponds to the
parity-check matrix h.

[h,g,k] = cyclgen(...) is the same as [h,g] = cyclgen(...),
except that it also returns the message length k.

Examples The code below produces parity-check and generator matrices for a
binary cyclic code with codeword length 7 and message length 4.

pol = cyclpoly(7,4);
[parmat,genmat,k] = cyclgen(7,pol)

The output is
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parmat =

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

genmat =

1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

k =

4

In the output below, notice that the parity-check matrix is different
from parmat above, because it corresponds to a nonsystematic cyclic
code. In particular, parmatn does not have a 3-by-3 identity matrix in
its leftmost three columns, as parmat does.

parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')
parmatn =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

See Also encode, decode, bchgenpoly, cyclpoly, “Block Coding”
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Purpose Produce generator polynomials for cyclic code

Syntax pol = cyclpoly(n,k)
pol = cyclpoly(n,k,opt)

Description For all syntaxes, a polynomial is represented as a row containing the
coefficients in order of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one
nontrivial generator polynomial for a cyclic code having codeword
length n and message length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial
generator polynomials for cyclic codes having codeword length n and
message length k. The output pol depends on the argument opt as
shown in the table below.

opt Significance of pol Format of pol

'min' One generator
polynomial having
the smallest possible
weight

Row vector
representing the
polynomial

'max' One generator
polynomial having
the greatest possible
weight

Row vector
representing the
polynomial

'all' All generator
polynomials M

Matrix, each row of
which represents one
such polynomial

a positive integer, L All generator
polynomials having
weight L

Matrix, each row of
which represents one
such polynomial
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The weight of a binary polynomial is the number of nonzero terms
it has. If no generator polynomial satisfies the given conditions, the
output pol is empty and a warning message is displayed.

Examples The first command below produces representations of three generator
polynomials for a [15,4] cyclic code. The second command shows that
1 + x + x2 + x3+ x5+ x7+ x8+ x11 is one such polynomial having the largest
number of nonzero terms.

c1 = cyclpoly(15,4,'all')
c2 = cyclpoly(15,4,'max')

The output is

c1 =

Columns 1 through 10

1 1 0 0 0 1 1 0 0 0
1 0 0 1 1 0 1 0 1 1
1 1 1 1 0 1 0 1 1 0

Columns 11 through 12

1 1
1 1
0 1

c2 =

Columns 1 through 10

1 1 1 1 0 1 0 1 1 0

Columns 11 through 12
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0 1

This command shows that no generator polynomial for a [15,4] cyclic
code has exactly three nonzero terms.

c3 = cyclpoly(15,4,3)

No generator polynomial satisfies the given constraints.

c3 =

[]

Algorithm If opt is 'min', 'max', or omitted, polynomials are constructed by
converting decimal integers to base p. Based on the decimal ordering,
gfprimfd returns the first polynomial it finds that satisfies the
appropriate conditions. This algorithm is similar to the one used in
gfprimfd.

See Also cyclgen, encode, “Block Coding”
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Purpose Convert decimal numbers to binary vectors

Syntax b = de2bi(d)
b = de2bi(d,n)
b = de2bi(d,n,p)
b = de2bi(d,[],p)
b = de2bi(d,...,flg)

Description b = de2bi(d) converts a nonnegative decimal integer d to a binary
row vector. If d is a vector, the output b is a matrix, each row of which
is the binary form of the corresponding element in d. If d is a matrix,
de2bi treats it like the vector d(:).

Note By default, de2bi uses the first column of b as the lowest-order
digit.

b = de2bi(d,n) is the same as b = de2bi(d), except that its output
has n columns, where n is a positive integer. An error occurs if the
binary representations would require more than n digits. If necessary,
the binary representation of d is padded with extra zeros.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a
base-p row vector, where p is an integer greater than or equal to 2. The
first column of b is the lowest base-p digit. b is padded with extra zeros
if necessary, so that it has n columns, where n is a positive integer. An
error occurs if the base-p representations would require more than n
digits. If d is a nonnegative decimal vector, the output b is a matrix,
each row of which is the (possibly zero-padded) base-p form of the
corresponding element in d. If d is a matrix, de2bi treats it like the
vector d(:).

b = de2bi(d,[],p) specifies the base p but not the number of columns.

b = de2bi(d,...,flg) uses the string flg to determine whether
the first column of b contains the lowest-order or highest-order
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digits. Values for flg are 'right-msb' and 'left-msb'. The value
'right-msb' produces the default behavior.

Examples The code below counts to 10 in decimal and binary.

d = (1:10)';
b = de2bi(d);
disp(' Dec Binary ')
disp(' ----- -------------------')
disp([d, b])

The output is below.

Dec Binary
----- -------------------

1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
4 0 0 1 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 0 0 0 1
9 1 0 0 1

10 0 1 0 1

The command below shows how de2bi pads its output with zeros.

bb = de2bi([3 9],5) % Zero-padding the output

bb =

1 1 0 0 0
1 0 0 1 0

The commands below show how to convert a decimal integer to base
three without specifying the number of columns in the output matrix.
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They also show how to place the most significant digit on the left instead
of on the right.

t = de2bi(12,[],3) % Convert 12 to base 3.

tleft = de2bi(12,[],3,'left-msb') % Significant digit on left

The output is

t =

0 1 1

tleft =

1 1 0

See Also bi2de
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Purpose Block decoder

Syntax msg = decode(code,n,k,'hamming/fmt',prim_poly)
msg = decode(code,n,k,'linear/fmt',genmat,trt)
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)
msg = decode(code,n,k)
[msg,err] = decode(...)
[msg,err,ccode] = decode(...)
[msg,err,ccode,cerr] = decode(...)

Optional
Inputs

Input Default Value

fmt binary

prim_poly gfprimdf(m) where n = 2^m-1

genpoly cyclpoly(n,k)

trt Uses syndtable to create
the syndrome decoding table
associated with the method’s
parity-check matrix

Description For All Syntaxes

The decode function aims to recover messages that were encoded using
an error-correction coding technique. The technique and the defining
parameters must match those that were used to encode the original
signal.
The “For All Syntaxes” on page 2-188 section on the encode reference
page explains the meanings of n and k, the possible values of fmt, and
the possible formats for code and msg. You should be familiar with
the conventions described there before reading the rest of this section.
Using the decode function with an input argument code that was not
created by the encode function might cause errors.
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For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',prim_poly) decodes code
using the Hamming method. For this syntax, n must have the form 2m-1
for some integer m greater than or equal to 3, and k must equal n-m.
prim_poly is a row vector that gives the binary coefficients, in order of
ascending powers, of the primitive polynomial for GF(2m) that is used in
the encoding process. The default value of prim_poly is gfprimdf(m).
The decoding table that the function uses to correct a single error in
each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code,
which is a linear block code determined by the k-by-n generator matrix
genmat. genmat is required as input. decode tries to correct errors
using the decoding table trt, where trt is a 2^(n-k)-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the
cyclic code code and tries to correct errors using the decoding table trt,
where trt is a 2^(n-k)-by-n matrix. genpoly is a row vector that gives
the coefficients, in order of ascending powers, of the binary generator
polynomial of the code. The default value of genpoly is cyclpoly(n,k).
By definition, the generator polynomial for an [n, k] cyclic code must
have degree n-k and must divide xn-1.

msg = decode(code,n,k) is the same as
msg = decode(code,n,k,'hamming/binary').

[msg,err] = decode(...) returns a column vector err that gives
information about error correction. If the code is a convolutional code,
err contains the metric calculations used in the decoding decision
process. For other types of codes, a nonnegative integer in the rth row
of err indicates the number of errors corrected in the rth message word;
a negative integer indicates that there are more errors in the rth word
than can be corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr
whose meaning depends on the format of code:
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• If code is a binary vector, a nonnegative integer in the rth row of
vec2matcerr indicates the number of errors corrected in the rth
codeword; a negative integer indicates that there are more errors in
the rth codeword than can be corrected.

• If code is not a binary vector, cerr = err.

Examples On the reference page for encode, some of the example code illustrates
the use of the decode function.

The example below illustrates the use of err and cerr when the coding
method is not convolutional code and the code is a binary vector. The
script encodes two five-bit messages using a cyclic code. Each codeword
has 15 bits. Errors are added to the first two bits of the first codeword
and the first bit of the second codeword. Then decode is used to recover
the original message. As a result, the errors are corrected. err reflects
the fact that the first message was recovered after correcting two
errors, while the second message was recovered after correcting one
error. cerr reflects the fact that the first codeword was decoded after
correcting two errors, while the second codeword was decoded after
correcting one error.

m = 4; n = 2^m-1; % Codeword length is 15.
k = 5; % Message length
msg = ones(10,1); % Two messages, five bits each
code = encode(msg,n,k,'cyclic'); % Encode the message.
% Now place two errors in first word and one error
% in the second word. Create errors by reversing bits.
noisycode = code;
noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');
noisycode(16) = bitxor(noisycode(16),1);
% Decode and try to correct the errors.
[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'cyclic');
disp('Transpose of err is'); disp(err')
disp('Transpose of cerr is'); disp(cerr')

The output is below.
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Single-error patterns loaded in decoding table.
1008 rows remaining.

2-error patterns loaded. 918 rows remaining.
3-error patterns loaded. 648 rows remaining.
4-error patterns loaded. 243 rows remaining.
5-error patterns loaded. 0 rows remaining.
Transpose of err is

2 1

Transpose of cerr is
2 1

Algorithm Depending on the decoding method, decode relies on such lower-level
functions as hammgen, syndtable, and cyclgen.

See Also encode, cyclpoly, syndtable, gen2par, “Block Coding”
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Purpose Restore ordering of symbols

Syntax deintrlvd = deintrlv(data,elements)

Description deintrlvd = deintrlv(data,elements) restores the original ordering
of the elements of data by acting as an inverse of intrlv. If data is a
length-N vector or an N-row matrix, elements is a length-N vector that
permutes the integers from 1 to N. To use this function as an inverse of
the intrlv function, use the same elements input in both functions.
In that case, the two functions are inverses in the sense that applying
intrlv followed by deintrlv leaves data unchanged.

Examples The code below illustrates the inverse relationship between intrlv
and deintrlv.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p); % Rearrange [10 20 30 ... 100].
b = deintrlv(a,p) % Deinterleave a to restore ordering.

The output is

b =

10 20 30 40 50 60 70 80 90 100

See Also intrlv, “Interleaving”
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Purpose Construct decision-feedback equalizer object

Syntax eqobj = dfe(nfwdweights,nfbkweights,alg)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst)
eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)

Description The dfe function creates an equalizer object that you can use with the
equalize function to equalize a signal. To learn more about the process
for equalizing a signal, see “Using Adaptive Equalizer Functions and
Objects”.

eqobj = dfe(nfwdweights,nfbkweights,alg) constructs a decision
feedback equalizer object. The equalizer’s feedforward and feedback
filters have nfwdweights and nfbkweights symbol-spaced complex
weights, respectively, which are initially all zeros. alg describes the
adaptive algorithm that the equalizer uses; you should create alg using
any of these functions: lms, signlms, normlms, varlms, rls, or cma. The
signal constellation of the desired output is [-1 1], which corresponds
to binary phase shift keying (BPSK).

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst) specifies the
signal constellation vector of the desired output.

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)
constructs a DFE with a fractionally spaced forward filter. The forward
filter has nfwdweights complex weights spaced at T/nsamp, where
T is the symbol period and nsamp is a positive integer. nsamp = 1
corresponds to a symbol-spaced forward filter.

Properties

The table below describes the properties of the decision feedback
equalizer object. To learn how to view or change the values of a decision
feedback equalizer object, see “Accessing Properties of an Equalizer”.

Note To initialize or reset the equalizer object eqobj, enter
reset(eqobj).
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Property Description

EqType Fixed value, 'Decision
Feedback Equalizer'

AlgType Name of the adaptive algorithm
represented by alg

nWeights Number of weights in the forward
filter and the feedback filter,
in the format [nfwdweights,
nfbkweights]. The number of
weights in the forward filter must
be at least 1.

nSampPerSym Number of input samples per
symbol (equivalent to nsamp
input argument). This value
relates to both the equalizer
structure (see the use of K in
“Decision-Feedback Equalizers”)
and an assumption about the
signal to be equalized.

RefTap (except for CMA
equalizers)

Reference tap index, between 1
and nfwdweights. Setting this to
a value greater than 1 effectively
delays the reference signal with
respect to the equalizer’s input
signal.

SigConst Signal constellation, a vector
whose length is typically a power
of 2.
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Property Description

Weights Vector that concatenates the
complex coefficients from the
forward filter and the feedback
filter. This is the set of wi
values in the schematic in
“Decision-Feedback Equalizers”.

WeightInputs Vector that concatenates the tap
weight inputs for the forward
filter and the feedback filter.
This is the set of ui values in the
schematic in “Decision-Feedback
Equalizers”.

ResetBeforeFiltering If 1, each call to equalize
resets the state of eqobj before
equalizing. If 0, the equalization
process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer
processed since the last reset.
When you create or reset eqobj,
this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the
adaptive algorithm function
that created alg: lms, signlms,
normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the
equalizer object by adjusting the values of the properties listed below.

Property Adjusted Value

Weights zeros(1,sum(nWeights))
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Property Adjusted Value

WeightInputs zeros(1,sum(nWeights))

StepSize
(Variable-step-size LMS
equalizers)

InitStep*ones(1,sum(nWeights))

InvCorrMatrix (RLS
equalizers)

InvCorrInit*eye(sum(nWeights))

An example illustrating relationships among properties is in “Linked
Properties of an Equalizer Object”.

Examples An example is in “Defining an Equalizer Object”.

See Also lms, signlms, normlms, varlms, rls, cma, lineareq, equalize,
“Equalizers”
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Purpose Discrete Fourier transform matrix in Galois field

Syntax dm = dftmtx(alph)

Description dm = dftmtx(alph) returns a Galois array that represents the discrete
Fourier transform operation on a Galois vector, with respect to the
Galois scalar alph. The element alph is a primitive nth root of unity
in the Galois field GF(2m) = GF(n+1); that is, n must be the smallest
positive value of k for which alph^k equals 1. The discrete Fourier
transform has size n and dm is an n-by-n array. The array dm represents
the transform in the sense that dm times any length-n Galois column
vector yields the transform of that vector.

Note The inverse discrete Fourier transform matrix is
dftmtx(1/alph).

Examples The example below illustrates the discrete Fourier transform and its
inverse, with respect to the element gf(3,4). The example examines
the first n powers of that element to make sure that only the nth power
equals one. Afterward, the example transforms a random Galois vector,
undoes the transform, and checks the result.

m = 4;
n = 2^m-1;
a = 3;
alph = gf(a,m);
mp = minpol(alph);
if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.

disp('alph is a primitive nth root of unity.')
dm = dftmtx(alph);
idm = dftmtx(1/alph);
x = gf(randint(n,1,2^m),m);
y = dm*x; % Transform x.
z = idm*y; % Recover x.
ck = isequal(x,z)
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end

The output is

alph is a primitive nth root of unity.

ck =

1

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, alph must be a primitive nth root of unity in
the Galois field GF(2m), where m is an integer between 1 and 8.

Algorithm The element dm(a,b) equals alph^((a-1)*(b-1)).

See Also fft, ifft, “Signal Processing Operations in Galois Fields”
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Purpose Compute distance spectrum of convolutional code

Syntax spect = distspec(trellis,n)
spect = distspec(trellis)

Description spect = distspec(trellis,n) computes the free distance and
the first n components of the weight and distance spectra of a
linear convolutional code. Because convolutional codes do not have
block boundaries, the weight spectrum and distance spectrum are
semi-infinite and are most often approximated by the first few
components. The input trellis is a valid MATLAB trellis structure,
as described in “Trellis Description of a Convolutional Encoder”. The
output, spect, is a structure with these fields:

Field Meaning

spect.dfree Free distance of the code. This is
the minimum number of errors in
the encoded sequence required to
create an error event.

spect.weight A length-n vector that lists the
total number of information
bit errors in the error events
enumerated in spect.event.

spect.event A length-n vector that lists the
number of error events for each
distance between spect.dfree
and spect.dfree+n-1. The
vector represents the first n
components of the distance
spectrum.

spect = distspec(trellis) is the same as spect =
distspec(trellis,1).

2-154



distspec

Examples The example below performs these tasks:

• Computes the distance spectrum for the rate 2/3 convolutional code
that is depicted on the reference page for the poly2trellis function

• Uses the output of distspec as an input to the bercoding function,
to find a theoretical upper bound on the bit error rate for a system
that uses this code with coherent BPSK modulation

• Plots the upper bound using the berfit function

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])
spect = distspec(trellis,4)
berub = bercoding(1:10,'conv','hard',2/3,spect); % BER bound
berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot.

The output and plot are below.

trellis =

numInputSymbols: 4
numOutputSymbols: 8

numStates: 128
nextStates: [128x4 double]

outputs: [128x4 double]

spect =

dfree: 5
weight: [1 6 28 142]
event: [1 2 8 25]
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Algorithm The function uses a tree search algorithm implemented with a stack,
as described in [2].

References [1] Bocharova, I. E., and B. D. Kudryashov, “Rational Rate Punctured
Convolutional Codes for Soft-Decision Viterbi Decoding,” IEEE
Transactions on Information Theory, Vol. 43, No. 4, July 1997, pp.
1305–1313.

[2] Cedervall, M., and R. Johannesson, “A Fast Algorithm for Computing
Distance Spectrum of Convolutional Codes,” IEEE Transactions on
Information Theory, Vol. 35, No. 6, Nov. 1989, pp. 1146–1159.

[3] Chang, J., D. Hwang, and M. Lin, “Some Extended Results on
the Search for Good Convolutional Codes,” IEEE Transactions on
Information Theory, Vol. 43, No. 5, Sep. 1997, pp. 1682–1697.
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[4] Frenger, P., P. Orten, and T. Ottosson, “Comments and Additions
to Recent Papers on New Convolutional Codes,” IEEE Transactions on
Information Theory, Vol. 47, No. 3, March 2001, pp. 1199–1201.

See Also bercoding, iscatastrophic, istrellis, and poly2trellis
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Purpose Package of Doppler classes

Description This package contains the classes that instantiate Doppler objects.
These objects are used as values of the DopplerSpectrum property,
which is common to both Rayleigh and Rician channel objects.

Properties
and
Methods

Every Doppler object has a read-only SpectrumType property. Other
properties are specific to each Doppler class.

Every Doppler object has a copy method, to duplicate itself, and a disp
method, to display its properties.

See Also doppler.ajakes, doppler.bigaussian, doppler.flat,
doppler.gaussian , doppler.jakes, doppler.rjakes,
doppler.rounded, “Fading Channels”, rayleighchan, ricianchan,
and stdchan
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Purpose Construct asymmetrical Doppler spectrum object

Syntax dop = doppler.ajakes(freqminmaxajakes)
dop = doppler.ajakes

Description The doppler.ajakes function creates an asymmetrical Jakes
(AJakes) Doppler spectrum object. This object is to be used for the
DopplerSpectrum property of a channel object created with the
rayleighchan or the ricianchan functions.

dop = doppler.ajakes(freqminmaxajakes), where freqminmaxajakes
is a row vector of two finite real numbers between -1 and 1, creates
a Jakes Doppler spectrum that is nonzero only for normalized (by
the maximum Doppler shift fd , in Hz) frequencies fnorm such

that − ≤ ≤ ≤ ≤1 1f f fnorm norm normmin, max, , where f normmin, is given by

freqminmaxajakes(1) and f normmax, is given by freqminmaxajakes(2).
The maximum Doppler shift fd is specified by the MaxDopplerShift

property of the channel object. Analytically: f f fnorm dmin, min /= and

f f fnorm dmax, max /= , where fmin is the minimum Doppler shift (in hertz)

and fmax is the maximum Doppler shift (in hertz).

When dop is used as the DopplerSpectrum property of a channel object,
space freqminmaxajakes(1) and freqminmaxajakes(2) by more than
1/50. Assigning a smaller spacing results in freqminmaxarjakes being
reset to the default value of [0 1].

dop = doppler.ajakes creates an asymmetrical Doppler spectrum object
with a default freqminmaxajakes = [0 1]. This syntax is equivalent
to constructing a Jakes Doppler spectrum that is nonzero only for
positive frequencies.
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Properties The AJakes Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'AJakes'
FreqMinMaxAJakes Vector of minimum andmaximum

normalized Doppler shifts, two
real finite numbers between -1
and 1

Theory
and
Applications

The Jakes power spectrum is based on the assumption that the angles
of arrival at the mobile receiver are uniformly distributed [1]: the

spectrum then covers the frequency range from − fd to fd , fd being
the maximum Doppler shift. When the angles of arrival are not
uniformly distributed, then the Jakes power spectrum does not cover

the full Doppler bandwidth from − fd to fd . The AJakes Doppler
spectrum object covers the case of a power spectrum that is nonzero

only for frequencies f such that − ≤ ≤ ≤ ≤f f f f fd dmin max . It is an
asymmetrical spectrum in the general case, but becomes a symmetrical

spectrum if f fmin max= − .

The normalized AJakes Doppler power spectrum is given analytically
by:
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where fmin and fmax denote the minimum and maximum frequencies
where the spectrum is nonzero. You can determine these values from
the probability density function of the angles of arrival.

Examples The following MATLAB code first creates a Rayleigh channel object with

a maximum Doppler shift of fd =10 Hz. It then creates an AJakes

Doppler object with minimum normalized Doppler shift f normmin, .= −0 2

and maximum normalized Doppler shift f normmax, .= 0 05 . The Doppler
object is then assigned to the DopplerSpectrum property of the channel
object. The channel then has a Doppler spectrum that is nonzero

for frequencies f such that − ≤ ≤ ≤ ≤f f f f fd dmin max , where

f f fnorm dmin min,= × = −2 Hz and f f fnorm dmax max, .= × = 0 5 Hz.

chan = rayleighchan(1/1000, 10);
dop_ajakes = doppler.ajakes([-0.2 0.05]);
chan.DopplerSpectrum = dop_ajakes;
chan.DopplerSpectrum

This code returns:

SpectrumType: 'AJakes'
FreqMinMaxAJakes: [-0.2000 0.0500]

References [1] Jakes, W. C., Ed., Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and
Applications, 2nd Ed., McGraw-Hill, 1998.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also doppler, doppler.bigaussian, doppler.flat, doppler.gaussian,
doppler.jakes, doppler.rjakes, doppler.rounded, rayleighchan,
ricianchan, stdchan, and “Fading Channels”
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Purpose Construct bi-Gaussian Doppler spectrum object

Syntax dop = doppler.bigaussian(property1,value1,...)
dop = doppler.bigaussian

Description The doppler.bigaussian function creates a bi-Gaussian Doppler
spectrum object to be used for the DopplerSpectrum property of a
channel object (created with either the rayleighchan function or the
ricianchan function).

dop = doppler.bigaussian(property1,value1,...) creates a
bi-Gaussian Doppler spectrum object with properties as specified by the
property/value pairs. If you do not specify a value for a property, the
property is assigned a default value.

dop = doppler.bigaussian creates a bi-Gaussian Doppler spectrum
object with default properties. The constructed Doppler spectrum object
is equivalent to a single Gaussian Doppler spectrum centered at zero
frequency. The equivalent command with property/value pairs is:

dop = doppler.bigaussian(`SigmaGaussian1', 1/sqrt(2),
`SigmaGaussian2', 1/sqrt(2),
`CenterFrequencyGaussian1', 0,
`CenterFrequencyGaussian2', 0,
`GainGaussian1', 0.5,
`GainGaussian2', 0.5)

Properties The bi-Gaussian Doppler spectrum object contains the following
properties.

Property Description

SpectrumType Fixed value, 'BiGaussian'
SigmaGaussian1 Normalized standard deviation

of first Gaussian function (real
positive finite scalar value)
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Property Description

SigmaGaussian2 Normalized standard deviation
of second Gaussian function (real
positive finite scalar value)

CenterFreqGaussian1 Normalized center frequency
of first Gaussian function (real
scalar value between -1 and 1)

CenterFreqGaussian2 Normalized center frequency of
second Gaussian function (real
scalar value between -1 and 1)

GainGaussian1 Power gain of first Gaussian
function (linear scale, real
nonnegative finite scalar value)

GainGaussian2 Power gain of second Gaussian
function (linear scale, real
nonnegative finite scalar value)

All properties are writable except for the SpectrumType property.

The properties SigmaGaussian1, SigmaGaussian2, GainGaussian1,
and GainGaussian2 are normalized by the MaxDopplerShift property
of the associated channel object.

Analytically, the normalized standard deviations of the first and

second Gaussian functions are determined as σ σG norm G df1 1, /=
and σ σG norm G df2 2, /= , respectively, where σG1 and σG2 are the
standard deviations of the first and second Gaussian functions, and

fd is the maximum Doppler shift, in hertz. Similarly, the normalized
center frequencies of the first and second Gaussian functions are

determined as f f fG norm G d1 1, /= and f f fG norm G d2 2, /= , respectively,

where fG1 and fG2 are the center frequencies of the first and second
Gaussian functions. The properties GainGaussian1 and GainGaussian2
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correspond to the power gains CG1 and CG2 , respectively, of the two
Gaussian functions.

Theory
and
Applications

The bi-Gaussian power spectrum consists of two frequency-shifted
Gaussian spectra. The COST207 channel models ([1], [2], [3]) specify
two distinct bi-Gaussian Doppler spectra, GAUS1 and GAUS2, to be
used in modeling long echos for urban and hilly terrain profiles.

The normalized bi-Gaussian Doppler spectrum is given analytically by:
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normalization coefficient.

If either fG1 0= or fG2 0= , a frequency-shifted Gaussian Doppler
spectrum is obtained.

Examples The following MATLAB code first creates a bi-Gaussian Doppler
spectrum object with the same parameters as that of a COST 207
GAUS2 Doppler spectrum. It then creates a Rayleigh channel object

with a maximum Doppler shift of fd = 30 and assigns the constructed
Doppler spectrum object to its DopplerSpectrum property.

dop_bigaussian = doppler.bigaussian(`SigmaGaussian1', 0.1, ...
`SigmaGaussian2', 0.15, `CenterFreqGaussian1', 0.7, ...
`CenterFreqGaussian2', -0.4, `GainGaussian1', 1, ...
`GainGaussian2', 1/10^1.5)

chan = rayleighchan(1e-3, 30);
chan.DopplerSpectrum = dop_bigaussian;
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References [1] COST 207 WG1, Proposal on channel transfer functions to be used in
GSM tests late 1986, COST 207 TD (86) 51 Rev. 3, Sept. 1986.

[2] COST 207, Digital land mobile radio communications, Office for
Official Publications of the European Communities, Final report,
Luxembourg, 1989.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also doppler, doppler.ajakes, doppler.flat, doppler.gaussian,
doppler.jakes, doppler.rjakes, doppler.rounded, rayleighchan,
ricianchan, stdchan, and “Fading Channels”
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Purpose Construct flat Doppler spectrum object

Syntax dop = doppler.flat

Description dop = doppler.flat creates a flat Doppler spectrum object that is to be
used for the DopplerSpectrum property of a channel object (created with
either the rayleighchan or the ricianchan function). The maximum
Doppler shift of the flat Doppler spectrum object is specified by the
MaxDopplerShift property of the channel object.

Properties The flat Doppler spectrum object contains only one property,
SpectrumType, which is read-only and has a fixed value of 'Flat'.

Theory
and
Applications

In a 3-D isotropic scattering environment, where the angles of arrival
are uniformly distributed in the azimuth and elevation planes, the
Doppler spectrum is found theoretically to be flat [2]. A flat Doppler
spectrum is also specified in some cases of the ANSI J-STD-008
reference channel models for PCS, for both outdoor (pedestrian) and
indoor (commercial) [1] applications.

The normalized flat Doppler power spectrum is given analytically by:

S f
f

f f
d

d( ) = ≤1
2

, 

where fd is the maximum Doppler frequency.

References [1] ANSI J-STD-008, Personal Station-Base Station Compatibility
Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA)
Personal Communications Systems, March 1995.

[2] Clarke, R. H., and Khoo, W. L., “3-D Mobile Radio Channel
Statistics”, IEEE Trans. Veh. Technol., Vol. 46, No. 3, pp. 798–799,
August 1997.
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See Also doppler, doppler.ajakes, doppler.bigaussian, doppler.gaussian,
doppler.jakes, doppler.rjakes, doppler.rounded, “Fading
Channels”, rayleighchan, ricianchan, and stdchan
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Purpose Construct Gaussian Doppler spectrum object

Syntax dop = doppler.gaussian
dop = doppler.gaussian(sigmagaussian)

Description The doppler.gaussian function creates a Gaussian Doppler spectrum
object that is to be used for the DopplerSpectrum property of a channel
object (created with either the rayleighchan or the ricianchan
function).

dop = doppler.gaussian creates a Gaussian Doppler spectrum object
with a default standard deviation (normalized by the maximum Doppler

shift fd , in Hz) σG norm, /= 1 2 . The maximum Doppler shift fd
is specified by the MaxDopplerShift property of the channel object.

Analytically, σ σG norm G df, / /= = 1 2 , where σG is the standard
deviation of the Gaussian Doppler spectrum.

dop = doppler.gaussian(sigmagaussian) creates a Gaussian Doppler
spectrum object with a normalized fd (by the maximum Doppler shift

fd , in Hz) σG norm, of value sigmagaussian.

Properties The Gaussian Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'Gaussian'
SigmaGaussian Normalized standard deviation of

the Gaussian Doppler spectrum
(a real positive number)

Theory
and
Applications

The Gaussian power spectrum is considered to be a good model for
multipath components with long delays in UHF communications [3]. It
is also proposed as a model for the aeronautical channel [2]. A Gaussian
Doppler spectrum is also specified in some cases of the ANSI J-STD-008
reference channel models for PCS applications, for both outdoor
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(wireless loop) and indoor (residential, office) [1]. The normalized
Gaussian Doppler power spectrum is given analytically by:
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f fc d= ln2 , where fd is the maximum Doppler shift, or equivalently

σG df= / 2 , the Doppler spread of the Gaussian power spectrum
becomes equal to the Doppler spread of the Jakes power spectrum,
where Doppler spread is defined as:
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Example The following code creates a Rayleigh channel object with a maximum
Doppler shift of fd = 10 . It then creates a Gaussian Doppler spectrum

object with a normalized standard deviation of σG,norm = 0 5. , and
assigns it to the DopplerSpectrum property of the channel object.

chan = rayleighchan(1/1000,10);
dop_gaussian = doppler.gaussian(0.5);
chan.DopplerSpectrum = dop_gaussian;
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References [1] ANSI J-STD-008, Personal Station-Base Station Compatibility
Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA)
Personal Communications Systems, March 1995.

[2] Bello, P. A., “Aeronautical channel characterizations,” IEEE Trans.
Commun., Vol. 21, pp. 548–563, May 1973.

[3] Cox, D. C., “Delay Doppler characteristics of multipath propagation
at 910 MHz in a suburban mobile radio environment,” IEEE
Transactions on Antennas and Propagation, Vol. AP-20, No. 5, pp.
625–635, Sept. 1972.

[4] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also doppler, doppler.ajakes, doppler.bigaussian, doppler.flat,
doppler.jakes, doppler.rjakes, doppler.rounded, “Fading
Channels”, rayleighchan, ricianchan, and stdchan
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Purpose Construct Jakes Doppler spectrum object

Syntax

Description dop = doppler.jakes creates a Jakes Doppler spectrum object that
is to be used for the DopplerSpectrum property of a channel object
(created with either the rayleighchan or the ricianchan function).
The maximum Doppler shift of the Jakes Doppler spectrum object is
specified by the MaxDopplerShift property of the channel object. By
default, channel objects are created with a Jakes Doppler spectrum.

Properties The Jakes Doppler spectrum object contains only one property,
SpectrumType, which is read-only and has a fixed value of 'Jakes'.

Theory
and
Applications

The Jakes Doppler power spectrum model is actually due to Gans
[2], who analyzed the Clarke-Gilbert model ([1], [3], and [5]). The
Clarke-Gilbert model is also called the classical model.

The Jakes Doppler power spectrum applies to a mobile receiver. It
derives from the following assumptions [6]:

• The radio waves propagate horizontally.

• At the mobile receiver, the angles of arrival of the radio waves are
uniformly distributed over [ , ]−π π .

• At the mobile receiver, the antenna is omnidirectional (i.e., the
antenna pattern is circular-symmetrical).

The normalized Jakes Doppler power spectrum is given analytically by:
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where fd is the maximum Doppler frequency.
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References [1] Clarke, R. H., “A Statistical Theory of Mobile-Radio Reception,” Bell
System Technical Journal, Vol. 47, No. 6, pp. 957–1000, July-August
1968.

[2] Gans, M. J., “A Power-Spectral Theory of Propagation in the
Mobile-Radio Environment,” IEEE Trans. Veh. Technol., Vol. VT-21,
No. 1, pp. 27–38, Feb. 1972.

[3] Gilbert, E. N., “Energy Reception for Mobile Radio,” Bell System
Technical Journal, Vol. 44, No. 8, pp. 1779–1803, Oct. 1965.

[4] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[5] Lee, W. C. Y., Mobile Communications Engineering: Theory and
Applications, 2nd Ed., McGraw-Hill, 1998.

[6] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also doppler, doppler.ajakes, doppler.bigaussian, doppler.flat,
doppler.gaussian, doppler.rjakes, doppler.rounded, “Fading
Channels”, rayleighchan, ricianchan, and stdchan
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Purpose Construct restricted Jakes Doppler spectrum object

Syntax dop = doppler.rjakes
dop = doppler.rjakes(freqminmaxrjakes)

Description The doppler.rjakes function creates a restricted Jakes (RJakes)
Doppler spectrum object that is used for the DopplerSpectrum property
of a channel object (created with either the rayleighchan or the
ricianchan function).

dop = doppler.rjakes creates a Doppler spectrum object equivalent
to the Jakes Doppler spectrum. The maximum Doppler shift of the
RJakes Doppler spectrum object is specified by the MaxDopplerShift
property of the channel object.

dop = doppler.rjakes(freqminmaxrjakes), where
freqminmaxrjakes is a row vector of two finite real numbers
between 0 and 1, creates a Jakes Doppler spectrum. This spectrum is
nonzero only for normalized frequencies (by the maximum Doppler shift,

fd , in Hertz), fnorm , such that 0 1≤ ≤ ≤ ≤f f fnorm norm normmin, max, ,

where f normmin, is given by freqminmaxrjakes(1) and f normmax,

is given by freqminmaxrjakes(2). The maximum Doppler shift fd
is specified by the MaxDopplerShift property of the channel object.

Analytically, f f fnorm dmin, min /= and f f fnorm dmax, max /= , where fmin

is the minimum Doppler shift (in Hertz) and fmax is the maximum
Doppler shift (in Hertz).

When dop is used as the DopplerSpectrum property of a channel
object, freqminmaxrjakes(1) and freqminmaxrjakes(2) should be
spaced by more than 1/50. Assigning a smaller spacing results in
freqminmaxrjakes being reset to the default value of [0 1].
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Properties The RJakes Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'RJakes'
FreqMinMaxRJakes Vector of minimum andmaximum

normalized Doppler shifts (two
real finite numbers between 0
and 1)

Theory
and
Applications

The Jakes power spectrum is based on the assumption that the angles
of arrival at the mobile receiver are uniformly distributed [1], where the
spectrum covers the frequency range from − fd to fd , fd being the
maximum Doppler shift. When the angles of arrival are not uniformly
distributed, the Jakes power spectrum does not cover the full Doppler
bandwidth from − fd to fd . This exception also applies to the case
where the antenna pattern is directional. This type of spectrum is
known as restricted Jakes [3]. The RJakes Doppler spectrum object
covers only the case of a symmetrical power spectrum, which is nonzero

only for frequencies f such that 0 ≤ ≤ ≤ ≤f f f fdmin max .

The normalized RJakes Doppler power spectrum is given analytically
by:

S f
A

f f f
f f f fr

d d
d( )

( / )
, min max=

−
≤ ≤ ≤ ≤

π 1
0

2
 

where

A
f
f

f
f

r

d d

=
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥− −

1

2 1 1

π
sin sinmax min

2-174



doppler.rjakes

fmin and fmax denote the minimum and maximum frequencies where
the spectrum is nonzero. They can be determined from the probability
density function of the angles of arrival.

Example The following code first creates a Rayleigh channel object with a
maximum Doppler shift of fd = 10 . It then creates an RJakes Doppler

object with minimum normalized Doppler shift f normmin, .= 0 14 and

maximum normalized Doppler shift f normmax, .= 0 9 .

The Doppler object is assigned to the DopplerSpectrum property of
the channel object. The channel then has a Doppler spectrum that is

nonzero for frequencies f such that 0 ≤ ≤ ≤ ≤f f f fdmin max , where

f f fnorm dmin min, .= × = 1 4 Hz and f f fnorm dmax max,= × = 9 Hz .

chan = rayleighchan(1/1000, 10);
dop_rjakes = doppler.rjakes([0.14 0.9]);
chan.DopplerSpectrum = dop_rjakes;
chan.DopplerSpectrum

The output is:

SpectrumType: 'RJakes'
FreqMinMaxRJakes: [0.1400 0.9000]

References [1] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and
Applications, 2nd Ed., McGraw-Hill, 1998.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also doppler, doppler.ajakes, doppler.bigaussian, doppler.flat,
doppler.gaussian, doppler.jakes, doppler.rounded, “Fading
Channels”, rayleighchan, ricianchan, and stdchan
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Purpose Construct rounded Doppler spectrum object

Syntax dop = doppler.rounded
dop = doppler.rounded(coeffrounded)

Description The doppler.rounded function creates a rounded Doppler spectrum
object that is used for the DopplerSpectrum property of a channel object
(created with either the rayleighchan or the ricianchan function).

dop = doppler.rounded creates a rounded Doppler spectrum object
with default polynomial coefficients a0 1= , a2 1 72= − . , a4 0 785= .
(see “Theory and Applications” on page 2-176 for the meaning of these
coefficients). The maximum Doppler shift fd (in Hertz) is specified by
the MaxDopplerShift property of the channel object.

dop = doppler.rounded(coeffrounded), where coeffrounded is a
row vector of three finite real numbers, creates a rounded Doppler
spectrum object with polynomial coefficients, a a a0 2 4, ,  , given
by coeffrounded(1), coeffrounded(2), and coeffrounded(3),
respectively.

Properties The rounded Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'Rounded'
CoeffRounded Vector of three polynomial

coefficients (real finite numbers)

Theory
and
Applications

A rounded spectrum is proposed as an approximation to the measured
Doppler spectrum of the scatter component of fixed wireless channels at
2.5 GHz [1]. However, the shape of the spectrum is influenced by the
center carrier frequency.
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The normalized rounded Doppler spectrum is given analytically by
a polynomial in f of order four, where only the even powers of f are
retained:
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fd is the maximum Doppler shift, and a a a0 2 4, ,  are real finite
coefficients. The fixed wireless channel model of IEEE 802.16 [1] uses
the following parameters: a0 1= , a2 1 72= − . , and a4 0 785= . . Because
the channel is modeled as Rician fading with a fixed line-of-sight (LOS)
component, a Dirac delta is also present in the Doppler spectrum at
f = 0 .

Example The following code creates a Rician channel object with a maximum
Doppler shift of fd = 10 . It then creates a rounded Doppler spectrum
object with polynomial coefficients a0 1 0= . , a2 0 5= − . , a4 1 5= . , and
assigns it to the DopplerSpectrum property of the channel object.

chan = ricianchan(1/1000,10,1);
dop_rounded = doppler.rounded([1.0 -0.5 1.5]);
chan.DopplerSpectrum = dop_rounded;

References [1] IEEE 802.16 Broadband Wireless Access Working Group,
“Channel models for fixed wireless applications,” IEEE 802.16a-03/01,
2003-06-27.
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See Also doppler, doppler.ajakes, doppler.bigaussian, doppler.flat,
doppler.gaussian, doppler.jakes, doppler.rjakes, “Fading
Channels”, rayleighchan, ricianchan, and stdchan
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Purpose Decode using differential pulse code modulation

Syntax sig = dpcmdeco(indx,codebook,predictor)
[sig,quanterror] = dpcmdeco(indx,codebook,predictor)

Description sig = dpcmdeco(indx,codebook,predictor) implements differential
pulse code demodulation to decode the vector indx. The vector codebook
represents the predictive-error quantization codebook. The vector
predictor specifies the predictive transfer function. If the transfer
function has predictive order M, predictor has length M+1 and an
initial entry of 0. To decode correctly, use the same codebook and
predictor in dpcmenco and dpcmdeco.

See “Representing Partitions”, “Representing Codebooks”, or the
quantiz reference page, for a description of the formats of partition
and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the
same as the syntax above, except that the vector quanterror is
the quantization of the predictive error based on the quantization
parameters. quanterror is the same size as sig.

Note You can estimate the input parameters codebook, partition,
and predictor using the function dpcmopt.

Examples See “Example: DPCM Encoding and Decoding” and “Example:
Comparing Optimized and Nonoptimized DPCM Parameters” for
examples that use dpcmdeco.

See Also quantiz, dpcmopt, dpcmenco, “Differential Pulse Code Modulation”

References [1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley &
Sons, 1994.
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Purpose Encode using differential pulse code modulation

Syntax indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description indx = dpcmenco(sig,codebook,partition,predictor) implements
differential pulse code modulation to encode the vector sig. partition
is a vector whose entries give the endpoints of the partition intervals.
codebook, a vector whose length exceeds the length of partition
by one, prescribes a value for each partition in the quantization.
predictor specifies the predictive transfer function. If the transfer
function has predictive order M, predictor has length M+1 and an
initial entry of 0. The output vector indx is the quantization index.

See “Differential Pulse Code Modulation” for more about the format of
predictor. See “Representing Partitions”, “Representing Partitions”,
or the reference page for quantiz in this chapter, for a description of
the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the
same as the syntax above, except that quants contains the quantization
of sig based on the quantization parameters. quants is a vector of
the same size as sig.

Note If predictor is an order-one transfer function, the modulation is
called a delta modulation.

Examples See “Example: DPCM Encoding and Decoding” and “Example:
Comparing Optimized and Nonoptimized DPCM Parameters” for
examples that use dpcmenco.

See Also quantiz, dpcmopt,dpcmdeco, “Differential Pulse Code Modulation”

References [1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley &
Sons, 1994.
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Purpose Optimize differential pulse code modulation parameters

Syntax predictor = dpcmopt(training_set,ord)
[predictor,codebook,partition] = dpcmopt(training_set,ord,

len)
[predictor,codebook,partition] = dpcmopt(training_set,ord,

ini_cb)

Description predictor = dpcmopt(training_set,ord) returns a vector
representing a predictive transfer function of order ord that is
appropriate for the training data in the vector training_set.
predictor is a row vector of length ord+1. See “Representing
Predictors” for more about its format.

Note dpcmopt optimizes for the data in training_set. For best
results, training_set should be similar to the data that you plan to
quantize.

[predictor,codebook,partition] =
dpcmopt(training_set,ord,len) is the same as the syntax above,
except that it also returns corresponding optimized codebook and
partition vectors codebook and partition. len is an integer that
prescribes the length of codebook. partition is a vector of length
len-1. See “Representing Partitions”, “Representing Codebooks”, or the
reference page for quantiz in this chapter, for a description of the
formats of partition and codebook.

[predictor,codebook,partition] =
dpcmopt(training_set,ord,ini_cb) is the same as the first syntax,
except that it also returns corresponding optimized codebook and
partition vectors codebook and partition. ini_cb, a vector of length at
least 2, is the initial guess of the codebook values. The output codebook
is a vector of the same length as ini_cb. The output partition is a
vector whose length is one less than the length of codebook.
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Examples See “Example: Comparing Optimized and Nonoptimized DPCM
Parameters” for an example that uses dpcmopt.

See Also dpcmenco, dpcmdeco, quantiz, lloyds, “Differential Pulse Code
Modulation”
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Purpose Differential phase shift keying demodulation

Syntax z = dpskdemod(y,M)
z = dpskdemod(y,M,phaserot)
z = dpskdemod(y,M,phaserot,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.dpskdemod instead.

z = dpskdemod(y,M) demodulates the complex envelope y of a DPSK
modulated signal. M is the alphabet size and must be an integer. If y
is a matrix with multiple rows and columns, the function processes
the columns independently.

Note The first element of the output z, or the first row of z, if z is a
matrix with multiple rows, represents an initial condition, because
the differential algorithm compares two successive elements of the
modulated signal.

z = dpskdemod(y,M,phaserot) specifies the phase rotation of the
modulation in radians. In this case, the total phase shift per symbol
is the sum of phaserot and the phase generated by the differential
modulation.

z = dpskdemod(y,M,phaserot,symbol_order) specifies how
the function assigns binary words to corresponding integers. If
symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a
Gray-coded ordering.

Examples The example below illustrates the fact that the first output symbol of a
differential PSK demodulator is an initial condition rather than useful
information.
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M = 4; % Alphabet size

x = randint(1000,1,M); % Random message

y = dpskmod(x,M); % Modulate.

z = dpskdemod(y,M); % Demodulate.

% Check whether the demodulator recovered the message.

s1 = symerr(x,z) % Expect one symbol error, namely, the first symbol.

s2 = symerr(x(2:end),z(2:end)) % Ignoring 1st symbol, expect no errors.

The output is below.

s1 =

1

s2 =

0

For another example that uses this function, see “Example: Curve
Fitting for an Error Rate Plot”.

See Also dpskmod, pskdemod, pskmod, “Modulation”
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Purpose Differential phase shift keying modulation

Syntax y = dpskmod(x,M)
y = dpskmod(x,M,phaserot)
y = dpskmod(x,M,phaserot,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.dpskmod instead.

y = dpskmod(x,M) outputs the complex envelope y of the modulation of
the message signal x using differential phase shift keying modulation.
M is the alphabet size and must be an integer. The message signal must
consist of integers between 0 and M-1. If x is a matrix with multiple
rows and columns, the function processes the columns independently.

y = dpskmod(x,M,phaserot) specifies the phase rotation of the
modulation in radians. In this case, the total phase shift per symbol
is the sum of phaserot and the phase generated by the differential
modulation.

y = dpskmod(x,M,phaserot,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set
to 'bin' (default), the function uses a natural binary-coded ordering. If
symbol_order is set to 'gray', it uses a Gray-coded ordering.

Examples The example below plots the output of the dpskmod function. The image
shows the possible transitions from each symbol in the DPSK signal
constellation to the next symbol.

M = 4; % Use DQPSK in this example, so M is 4.
x = randint(500,1,M,13); % Random data
y = dpskmod(x,M,pi/8); % Modulate using a nonzero initial phase.
plot(y) % Plot all points, using lines to connect them.
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For another example that uses this function, see “Example: Curve
Fitting for an Error Rate Plot”.

See Also dpskdemod, pskmod, pskdemod, “Modulation”
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Purpose Low-density parity-check codes from DVB-S.2 standard

Syntax H = dvbs2ldpc(r)

Description H = dvbs2ldpc(r) returns the parity-check matrix of the LDPC code
with code rate r from the DVB-S.2 standard. H is a sparse logical matrix.

Possible values for r are 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and
9/10. The block length of the code is 64800.

Example H = dvbs2ldpc(3/5);
spy(H); % Visualize the location of nonzero elements in H.
henc = fec.ldpcenc(H);
hdec = fec.ldpcdec(H);

See Also fec.ldpcdec, fec.ldpcenc, spy
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Purpose Block encoder

Syntax code = encode(msg,n,k,'linear/fmt',genmat)
code = encode(msg,n,k,'cyclic/fmt',genpoly)
code = encode(msg,n,k,'hamming/fmt',prim_poly)
code = encode(msg,n,k)
[code,added] = encode(...)

Optional
Inputs

Input Default Value

fmt binary

genpoly cyclpoly(n,k)

prim_poly gfprimdf(n-k)

Description For All Syntaxes

The encode function encodes messages using one of the following
error-correction coding methods:

• Linear block

• Cyclic

• Hamming

For all of these methods, the codeword length is n and the message
length is k.

msg, which represents the messages, can have one of several formats.
The table below shows which formats are allowed for msg, how the
argument fmt should reflect the format of msg, and how the format of
the output code depends on these choices. The examples in the table are
for k = 4. If fmt is not specified as input, its default value is binary.
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Note If 2^n or 2^k is large, use the default binary format instead of
the decimal format. This is because the function uses a binary format
internally, while the roundoff error associated with converting many
bits to large decimal numbers and back might be substantial.

Information Formats

Dimension of msg Value of fmt
Argument

Dimension of code

Binary column or row
vector

binary Binary column or row
vector

Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1].'

Binary matrix with k
columns

binary Binary matrix with n
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]

Column or row vector
of integers in the
range [0, 2^k-1]

decimal Column or row vector
of integers in the
range [0, 2^n-1]

Example: msg = [6, 10, 9].'

For Specific Syntaxes

code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using
genmat as the generator matrix for the linear block encoding method.
genmat, a k-by-n matrix, is required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and
creates a systematic cyclic code. genpoly is a row vector that gives
the coefficients, in order of ascending powers, of the binary generator
polynomial. The default value of genpoly is cyclpoly(n,k). By
definition, the generator polynomial for an [n,k] cyclic code must have
degree n-k and must divide xn-1.
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code = encode(msg,n,k,'hamming/fmt',prim_poly) encodes msg
using the Hamming encoding method. For this syntax, n must have the
form 2m-1 for some integer m greater than or equal to 3, and k must
equal n-m. prim_poly is a row vector that gives the binary coefficients,
in order of ascending powers, of the primitive polynomial for GF(2m)
that is used in the encoding process. The default value of prim_poly is
the default primitive polynomial gfprimdf(m).

code = encode(msg,n,k) is the same as code =
encode(msg,n,k,'hamming/binary').

[code,added] = encode(...) returns the additional variable added.
added is the number of zeros that were placed at the end of the message
matrix before encoding in order for the matrix to have the appropriate
shape. “Appropriate” depends on n, k, the shape of msg, and the
encoding method.

Examples The example below illustrates the three different information formats
(binary vector, binary matrix, and decimal vector) for Hamming code.
The three messages have identical content in different formats; as a
result, the three codes that encode creates have identical content in
correspondingly different formats.

m = 4; n = 2^m-1; % Codeword length = 15
k = 11; % Message length

% Create 100 messages, k bits each.
msg1 = randint(100*k,1,[0,1]); % As a column vector
msg2 = vec2mat(msg1,k); % As a k-column matrix
msg3 = bi2de(msg2)'; % As a row vector of decimal integers

% Create 100 codewords, n bits each.
code1 = encode(msg1,n,k,'hamming/binary');
code2 = encode(msg2,n,k,'hamming/binary');
code3 = encode(msg3,n,k,'hamming/decimal');
if ( vec2mat(code1,n)==code2 & de2bi(code3',n)==code2 )

disp('All three formats produced the same content.')
end
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The output is

All three formats produced the same content.

The next example creates a cyclic code, adds noise, and then decodes
the noisy code. It uses the decode function.

n = 3; k = 2; % A (3,2) cyclic code
msg = randint(100,k,[0,1]); % 100 messages, k bits each
code = encode(msg,n,k,'cyclic/binary');
% Add noise.
noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2);
newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.
% Compute error rate for decoding the noisy code.
[number,ratio] = biterr(newmsg,msg);
disp(['The bit error rate is ',num2str(ratio)])

The output is below. Your error rate results might vary because the
noise is random.

The bit error rate is 0.08

The next example encodes the same message using Hamming and cyclic
methods. This example also creates Hamming code with the 'linear'
option of the encode command. It then decodes each code and recovers
the original message.

n = 7; % Codeword length
k = 4; % Message length
m = log2(n+1); % Express n as 2^m-1.
msg = randint(100,1,[0,2^k-1]); % Column of decimal integers

% Create various codes.
codehamming = encode(msg,n,k,'hamming/decimal');
[parmat,genmat] = hammgen(m);
codehamming2 = encode(msg,n,k,'linear/decimal',genmat);
if codehamming==codehamming2

disp('The ''linear'' method can create Hamming code.')
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end
codecyclic = encode(msg,n,k,'cyclic/decimal');

% Decode to recover the original message.
decodedhamming = decode(codehamming,n,k,'hamming/decimal');
decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');
if (decodedhamming==msg & decodedcyclic==msg)

disp('All decoding worked flawlessly in this noiseless world.')
end

The output is

The 'linear' method can create Hamming code.
All decoding worked flawlessly in this noiseless world.

Algorithm Depending on the encoding method, encode relies on such lower-level
functions as hammgen and cyclgen.

See Also decode, cyclpoly, cyclgen, hammgen, “Block Coding”
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Purpose Equalize signal using equalizer object

Syntax y = equalize(eqobj,x)
y = equalize(eqobj,x,trainsig)
[y,yd] = equalize(...)
[y,yd,e] = equalize(...)

Description y = equalize(eqobj,x) processes the baseband signal vector x with
equalizer object eqobj and returns the equalized signal vector y. At the
end of the process, eqobj contains updated state information such as
equalizer weight values and input buffer values. To construct eqobj,
use the lineareq or dfe function, as described in “Using Adaptive
Equalizer Functions and Objects”. The equalize function assumes that
the signal x is sampled at nsamp samples per symbol, where nsamp is the
value of the nSampPerSym property of eqobj. For adaptive algorithms
other than CMA, the equalizer adapts in decision-directed mode using a
detector specified by the SigConst property of eqobj. The delay of the
equalizer is (eqobj.RefTap-1)/eqobj.nSampPerSym, as described in
“Delays from Equalization”.

Note that (eqobj.RefTap-1) must be an integer multiple of
nSampPerSym. For a fractionally-spaced equalizer, the taps are spaced
at fractions of a symbol period. The reference tap pertains to training
symbols, and thus, must coincide with a whole number of symbols
(i.e., an integer number of samples per symbol). eqobj.RefTap=1
corresponds to the first symbol, eqobj.RefTap=nSampPerSym+1 to the
second, and so on. Therefore (eqobj.RefTap-1) must be an integer
multiple of nSampPerSym.

If eqobj.ResetBeforeFiltering is 0, equalize uses the existing
state information in eqobj when starting the equalization
operation. As a result, equalize(eqobj,[x1 x2]) is equivalent
to [equalize(eqobj,x1) equalize(eqobj,x2)]. To reset eqobj
manually, apply the reset function to eqobj.

If eqobj.ResetBeforeFiltering is 1, equalize resets eqobj before
starting the equalization operation, overwriting any previous state
information in eqobj.
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y = equalize(eqobj,x,trainsig) initially uses a training
sequence to adapt the equalizer. After processing the training
sequence, the equalizer adapts in decision-directed mode.
The vector length of trainsig must be less than or equal to
length(x)-(eqobj.RefTap-1)/eqobj.nSampPerSym.

[y,yd] = equalize(...) returns the vector yd of detected data
symbols.

[y,yd,e] = equalize(...) returns the result of the error calculation
described in “Error Calculation”. For adaptive algorithms other than
CMA, e is the vector of errors between y and the reference signal,
where the reference signal consists of the training sequence or detected
symbols.

Examples For examples that use this function, see “Equalizing Using a Training
Sequence”, “Example: Equalizing Multiple Times, Varying the Mode”,
and “Example: Adaptive Equalization Within a Loop”.

See Also lms, signlms, normlms, varlms, rls, cma, lineareq, dfe, “Equalizers”
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Purpose Generate eye diagram

Syntax eyediagram(x,n)
eyediagram(x,n,period)
eyediagram(x,n,period,offset)
eyediagram(x,n,period,offset,plotstring)
eyediagram(x,n,period,offset,plotstring,h)
h = eyediagram(...)

Description Warning

This is an obsolete function and may be removed in the future.
Use the object commscope.eyediagram instead.

eyediagram(x,n) creates an eye diagram for the signal x, plotting n
samples in each trace. n must be an integer greater than 1. The labels
on the horizontal axis of the diagram range between -1/2 and 1/2. The
function assumes that the first value of the signal, and every nth value
thereafter, occur at integer times. The interpretation of x and the
number of plots depend on the shape and complexity of x:

• If x is a real two-column matrix, eyediagram interprets the first
column as in-phase components and the second column as quadrature
components. The two components appear in different subplots of a
single figure window.

• If x is a complex vector, eyediagram interprets the real part
as in-phase components and the imaginary part as quadrature
components. The two components appear in different subplots of a
single figure window.

• If x is a real vector, eyediagram interprets it as a real signal. The
figure window contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except
that the labels on the horizontal axis range between -period/2 and
period/2.
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eyediagram(x,n,period,offset) is the same as the syntax above,
except that the function assumes that the (offset+1)st value of the
signal, and every nth value thereafter, occur at times that are integer
multiples of period. The variable offsetmust be a nonnegative integer
between 0 and n-1.

eyediagram(x,n,period,offset,plotstring) is the same as the
syntax above, except that plotstring determines the plotting symbol,
line type, and color for the plot. plotstring is a string whose format
and meaning are the same as in the plot function. The default string is
'b-', which produces a blue solid line.

eyediagram(x,n,period,offset,plotstring,h) is the same as the
syntax above, except that the eye diagram is in the figure whose handle
is h, rather than in a new figure. h must be a handle to a figure that
eyediagram previously generated.

Note You cannot use hold on to plot multiple signals in the same
figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that
h is the handle to the figure that contains the eye diagram.

Examples For an online demonstration, type showdemo scattereyedemo.

See Also scatterplot, plot, scattereyedemo, “Eye Diagrams”
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Purpose Launches eye diagram scope for eye diagram object H

Syntax eyescope

Description Use EyeScope to examine the data in an eye diagram object. EyeScope
shows both the eye diagram plot and measurement results in a unified,
graphical environment, providing a very efficient means for viewing eye
diagram data. For more information, refer to the EyeScope chapter in
the Communications Toolbox User’s Guide.

Starting
EyeScope

To start EyeScope from the MATLAB® command line, type:
eyescope

The following figure shows an EyeScope that does not have an eye
diagram object loaded in its memory.
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Alternatively, you can start EyeScope so it displays an eye diagram
object. To start EyeScope so it displays an eye diagram object, type the
following at the MATLAB command line:

eyescope(h)

Note h is a handle to an eye diagram object in the workspace.

The
EyeScope
Environment

• “EyeScope Menu Bar” on page 2-199

• “Eye Diagram Object Plot and Plot Controls” on page 2-199

• “Eye Diagram Object Settings Panel” on page 2-201
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• “Measurements” on page 2-202

EyeScope Menu Bar

EyeScope Menu Bar

The EyeScope menu bar is comprised of four menus: File, Options,
View, and Help.

• Use the File menu to control the session management functions,
import an eye diagram object into EyeScope, and export an eye
diagram plot.

• Use the Options menu to setup the eye diagram scope by selecting
which eye diagram settings and measurements EyeScope displays.

• Use the View menu to toggle between Single eye diagram view or
Compare measurement results view, and to add or modify a legend
for the eye diagram plot.

• The Help menu is used to access help pertaining to the eye diagram
object and EyeScope.

Eye Diagram Object Plot and Plot Controls

The Eye diagram object plot is the region of the GUI where the eye
diagram plot appears.
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Eye diagram plot controls are user-configurable settings that specify
plot type, color scale, minimum and maximum plot PDF range, and plot
time offset for the eye diagram being analyzed. To access the EyeScope
plot controls Options > Eye Diagram Plot Controls
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Note The value for the Plot time offset parameter can either be
entered directly into the text box or set using the slide bar control.

For more information pertaining to the eye diagram properties, refer
to the commscope.eyediagram reference page.

Eye Diagram Object Settings Panel

The eye diagram object settings panel displays the eye diagram object
settings. The default EyeScope configuration displays the following
eye diagram object settings:

• Sampling frequency

• Symbol rate

• Eye level boundaries

• BER threshold

• Amplitude threshold
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To specify which eye diagram object settings display in EyeScope, refer
to “Selecting Which Eye Diagram Object Settings To Display” on page
2-209. If you select additional eye diagram object settings to display in
EyeScope, use the scroll buttons to view all of the settings.

Measurements

The Measurements panel displays the eye diagram measurement
settings. The default EyeScope configuration displays the following
eye diagram object measurements:

• Horizontal Eye Opening

• Random Jitter

• Deterministic Jitter

• Total Jitter

• RMS Jitter

• Peak to Peak Jitter

• Vertical Opening

• Rise Time

• Fall Time

• Eye SNR
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To select which eye diagram measurements EyeScope displays, refer
to “Selecting Which Eye Diagram Measurements To Display” on page
2-210. If you select additional eye diagram object measurements to
display in EyeScope, use the scroll buttons to view all of the settings.

Using
EyeScope

• “Starting EyeScope with an Argument” on page 2-204

• “Starting a new Session” on page 2-204

• “Opening a Session” on page 2-204

• “Saving a Session” on page 2-205

• “Importing an Eye Diagram Object” on page 2-206

• “Printing to a Figure” on page 2-208

• “Selecting Which Eye Diagram Object Settings To Display” on page
2-209

• “Selecting Which Eye Diagram Measurements To Display” on page
2-210
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Starting EyeScope with an Argument

You can start EyeScope so it is displaying an eye diagram object. To
start EyeScope so it is displaying an eye diagram object, type the
following at the MATLAB command line:

eyescope(h)

Note h is a handle to an eye diagram object presently in the workspace.

Starting a new Session

Starting a new session purges EyeScope memory, returning EyeScope
to an empty plot display. If changes have been made to an open session
and you start a new session, you will be prompted to save the open
session.

Opening a Session

To open session, choose the file name and location of the session file.
The file extensions for a session file is .eds, which stands for eye diagram
scope. If changes have been made to a session that is presently open
and you try to open up a new session, you will be prompted to save the
session that is presently open before the new session can start.

To open a session:

1

Click File > Open Session.

The Select File To Open Window appears.
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2

Navigate to the EyeScope session file you want, and click Open.

Saving a Session

The Save Session selection saves the current session, updating the
session file. A session file includes the eye diagram object, eyescope
options, and plot control selections.

If you attempt to save a session that you have not previously saved,
EyeScope will prompt you for a file name and location. Otherwise, the
session is saved to the previously selected file.

To save a session, follow these steps:

1
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Click File > Save Session.

2

Navigate to the folder where you want to save the EyeScope session
file and click Save.

Importing an Eye Diagram Object

The Import menu selection imports an eye diagram object from either
the workspace or a MAT-file to EyeScope. The imported variable name
will be reconstructed to reflect the origin of the eye diagram object,
as follows:

• If an object is imported from the workspace, the variable name will
be ws_object name, where object name is the name of the original
variable.

• If the object is imported from a MATLAB file, then the file name
(without the path) precedes the object name.

Importing an object creates a copy of the object, using the naming
convention previously described. EyeScope displays the object’s
contents as configured when the object was imported. EyeScope does
not track any object changes made in the workspace (or to the MATLAB
file) from which the object was imported.

To import an eye diagram object:

1

Click File > Import Eye Diagram Object

The Import eye diagram object window appears.
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The contents panel of the of the Import eye diagram object window
displays all eye diagram objects available in the source location.

2

From the Import eye diagram object window, select the source for
the object being imported.

• Select From workspace to import an eye diagram object directly
from the workspace.

• Select From File to choose an eye diagram object file that was
previously saved and click Browse to select the file to be loaded.

3

Click Import.
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Printing to a Figure

EyeScope allows you to print an eye diagram plot to a separate
MATLAB figure window. From the MATLAB figure window, along with
other tasks, you can print, zoom, or edit the plot.

To export an eye diagram figure:

1

Click File > Print to Figure

The MATLAB figure window, containing the exported image,
appears.
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Selecting Which Eye Diagram Object Settings To Display

The Eye Diagram Object Settings View allows you to select which
object settings display in the eye diagram object settings panel. You
make your selections in the Configure eye diagram object settings view
window, where a shuttle control allows you to add, remove, or reorder
the settings you are displaying.

To add an eye diagram object setting:

1

Click Options > Eye Diagram Object Settings View

The Configure eye diagram object settings view window appears.

2

Locate any items to be added in the list of Available items, and
left-click to select.
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Note To select multiple items, you can either press and hold the
<Shift> key and left-click or press and hold the <Ctrl> key and
left-click.

When you select an item, the Quick help panel displays information
about the item. If you select multiple items, Quick help displays
information pertaining to the last item you select.

3

Click Add.

Note Using the Move Up orMove Down buttons, you can change
the order in which the eye diagrams settings you select appear.

4

Click OK .

Selecting Which Eye Diagram Measurements To Display

You can modify the contents of the measurement panel by selecting
which eye diagram measurements display in the eye diagram
object settings panel. You make your selections in the Configure
measurements view window, where a shuttle control allows you to add,
remove, or reorder the settings you are including.

Adding An Eye Diagram Measurement Setting

1

Click Options > Measurements View

The Configure measurements window appears.
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2

Locate any items to be added in the list of Available items, and
left-click to select.

Note To select multiple items, you can either press and hold the
<Shift> key and left-click or press and hold the <Ctrl> key and
left-click.

When you select an item, the Quick help panel displays information
about the item. If you select multiple items, Quick help displays
information pertaining to the last item you select.

3

Click Add.
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Note Using theMove Up or Move Down buttons, you can change
the order in which the eye diagrams settings you select appear.

4

Click OK .
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Purpose Construct LDPC decoder object

Syntax l = fec.ldpcdec(H)
l = fec.ldpcdec
decoded = decode(l, llr)

Description The fec.ldpcdec function creates a low-density parity-check (LDPC)
decoder object that you can use with the decode method to decode
output from a demodulator.

l = fec.ldpcdec(H) constructs an LDPC decoder object l for a binary
systematic LDPC code with a parity-check matrix H.

H must be a sparse zero-one matrix. n and n-k are the number of
columns and the number of rows, respectively, in H.

l = fec.ldpcdec constructs an LDPC decoder object l with a default
parity-check matrix (32400-by-64800), which corresponds to an
irregular LDPC code with the structure shown in the following table.

Row Number of 1s Per Row

1 6
2 to 32400 7

Column Number of 1s Per Column

1 to 12960 8
12961 to 32400 3
Columns 32401 to 64800 form a lower triangular matrix. Only the
elements on its main diagonal and the subdiagonal immediately below
are 1s. This LDPC code is used in conjunction with a BCH code in the
Digital Video Broadcasting standard DVB-S.2 to achieve a packet error

rate below 10 7− at about 0.7 dB to 1 dB from the Shannon limit.

Properties

The following table describes the properties of an LDPC decoder object.
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ParityCheckMatrix specifies the LDPC code. DecisionType,
OutputFormat, DoParityChecks, and NumIterations specify settings
for the decoding operation. All other properties are read-only.

Property Description

ParityCheckMatrix Parity-check matrix of the LDPC code.
Stored as a sparse logical matrix.

BlockLength Total number of bits in a codeword, n.
NumInfoBits Number of information bits in a codeword,

k.
NumParityBits Number of parity bits in a codeword, n-k.
DecisionType Value can be 'Hard decision' (default)

or 'Soft decision'.
OutputFormat Value can be 'Information part'

(default) or 'Whole codeword'.
DoParityChecks Determines whether the parity checks

should be verified after each iteration, and
whether the decoder should stop iterating
if all parity checks are satisfied. Value can
be 'Yes' or 'No' (default).

NumIterations Number of iterations to be performed for
decoding one codeword. Default value is
50.
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Property Description

ActualNumIterations Actual number of iterations executed for
the last codeword. Initial value is [].

FinalParityChecks (n-k)-by-1 vector. 1s indicate the parity
checks that are not satisfied when the
decoder stops. Initial value is [].

When ParityCheckMatrix is changed, the properties BlockLength,
NumInfoBits, and NumParityBits are updated.

Setting DoParityChecks to 'Yes' can speed up decoding in some
situations by reducing the number of iterations executed.

Decoding Method

This object has a method decode that is used to decode signals.

decoded = decode(l, llr) decodes an LDPC code using the
message-passing algorithm, where l is an LDPC decoder object and
llr is a 1-by-BlockLength vector.

The results returned in decoded depends on the parameters of the
LDPC decoder object.

If the property... is set to... then decoded is...

DecisionType 'Hard decision' The decoded bits. See
“Decoding Algorithm”
on page 2-216.
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If the property... is set to... then decoded is...

DecisionType 'Soft decision' The log-likelihood
ratios for the decoded
bits.

OutputFormat 'Information part' A 1-by-NumInfoBits
vector.

OutputFormat 'Whole codeword' A 1-by-BlockLength
vector.

This method uses the properties DecisionType, OutputFormat,
NumIterations, and DoParityChecks, and updates the values for
FinalParityChecks, and ActualNumIterations.

Decoding Algorithm

������� 
��

�������


��

���������������� 
������ �����������

� � �� � � � ��� � � ��� ��� ��	 � ��� ��

The input to the LDPC decoder is the log-likelihood ratio (LLR), L ci( ) ,
which is defined by the following equation

L c
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where ci is the ith bit of the transmitted codeword, c. There are three

key variables in the algorithm: L rji( ) , L qij( ) , and L Qi( ) . L qij( ) is

initialized as L q L cij i( ) ( )= . For each iteration, update L rji( ) , L qij( ) ,
and L Qi( ) using the following equations
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L q L c L rij i j i
j C ji
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where the index sets, C ji \ and V ij \ , are chosen as shown in the
following example.

Suppose you have the following parity-check matrix H:

H =

⎛

⎝

⎜
⎜
⎜
⎜

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1
⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

For i = 5 and j = 3 , the index sets would be
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1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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V
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At the end of each iteration, L Qi( ) provides an updated estimate of the
a posteriori log-likelihood ratio for the transmitted bit ci .

The soft-decision output for ci is L Qi( ) . The hard-decision output for
ci is 1 if L Qi( ) < 0 , and 0 otherwise.

If the property DoParityCheck is set to 'no', the algorithm iterates as
many times as specified by NumIterations.

If the property DoParityCheck is set to 'yes', then at the end of each

iteration the algorithm verifies the parity check equation (HcT = 0 )
and stops if it is satisfied.

In this algorithm, atanh(1) and atanh(-1) are set to be 19.07 and
-19.07 respectively to avoid infinite numbers from being used in the
algorithm’s equations. These numbers were chosen because MATLAB
returns 1 for tanh(19.07) and -1 for tanh(-19.07), due to finite precision.
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Usage Example

This example demonstrates the use of this object.

enc = fec.ldpcenc; % Construct a default LDPC encoder object

% Construct a companion LDPC decoder object
dec = fec.ldpcdec;
dec.DecisionType = 'Hard decision';
dec.OutputFormat = 'Information part';
dec.NumIterations = 50;
% Stop if all parity-checks are satisfied
dec.DoParityChecks = 'Yes';

% Generate and encode a random binary message
msg = randint(1,enc.NumInfoBits,2);
codeword = encode(enc,msg);

% Construct a BPSK modulator object
modObj = modem.pskmod('M',2,'InputType','Bit');

% Modulate the signal (map bit 0 to 1 + 0i, bit 1 to -1 + 0i)
modulatedsig = modulate(modObj, codeword);

% Noise parameters
SNRdB = 1;
sigma = sqrt(10^(-SNRdB/10));

% Transmit signal through AWGN channel
receivedsig = awgn(modulatedsig, SNRdB, 0); % Signal power = 0 dBW

% Visualize received signal
scatterplot(receivedsig)
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% Construct a BPSK demodulator object to compute
% log-likelihood ratios
demodObj = modem.pskdemod(modObj,'DecisionType','LLR', ...

'NoiseVariance',sigma^2);

% Compute log-likelihood ratios (AWGN channel)
llr = demodulate(demodObj, receivedsig);

% Decode received signal
decodedmsg = decode(dec, llr);
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% Actual number of iterations executed
disp(['Number of iterations executed = ' ...

num2str(dec.ActualNumIterations)]);
% Number of parity-checks violated
disp(['Number of parity-checks violated = ' ...

num2str(sum(dec.FinalParityChecks))]);
% Compare with original message
disp(['Number of bits incorrectly decoded = ' ...

num2str(nnz(decodedmsg-msg))]);

Example with a Parity-Check Matrix

This example demonstrates the construction of an LDPC decoder object
with a parity-check matrix.

i = [1 3 2 4 1 2 3 3 4]; % row indices of 1s
j = [1 1 2 2 3 4 4 5 6]; % column indices of 1s
H = sparse(i,j,ones(length(i),1)); % parity-check matrix H
l = fec.ldpcdec(H);

References [1] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge,
MA, MIT Press, 1963.

See Also dvbs2ldpc, fec.ldpcenc, modem
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Purpose Construct LDPC encoder object

Syntax l = fec.ldpcenc(H)
l = fec.ldpcenc
codeword = encode(l, msg)

Description The fec.ldpcenc function creates a low-density parity-check (LDPC)
encoder object that you can use with the encode method to encode a
signal.

l = fec.ldpcenc(H) constructs an LDPC encoder object l for a binary
systematic LDPC code with a parity-check matrix H.

H must be a sparse zero-one matrix. n and n-k are the number of
columns and the number of rows, respectively, in H. The last n-k
columns in H must be an invertible matrix in GF(2).

l = fec.ldpcenc constructs an LDPC encoder object l with a default
parity-check matrix (32400-by-64800), which corresponds to an
irregular LDPC code with the structure shown in the following table.

Row Number of 1s Per Row

1 6
2 to 32400 7

Column Number of 1s Per Column

1 to 12960 8
12961 to 32400 3
Columns 32401 to 64800 form a lower triangular matrix. Only the
elements on its main diagonal and the subdiagonal immediately below
are 1s. This LDPC code is used in conjunction with a BCH code in the
Digital Video Broadcasting standard DVB-S.2 to achieve a packet error

rate below 10 7− at about 0.7 dB to 1 dB from the Shannon limit.
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Properties

The following table describes the properties of an LDPC encoder object.
Only ParityCheckMatrix is writable. All other properties are derived
from it.

Property Description

ParityCheckMatrix Parity-check matrix of the LDPC code.
Stored as a sparse logical matrix.

BlockLength Total number of bits in a codeword, n.
NumInfoBits Number of information bits in a codeword,

k.
NumParityBits Number of parity bits in a codeword, n-k.

EncodingAlgorithm Method for solving the parity-check
equation to compute the parity bits using
the information bits. Set to 'Forward
Substitution' if the last n-k columns in H
are a lower triangular matrix, 'Backward
Substitution' if the last n-k columns
in H are an upper triangular matrix, and
'Matrix Inverse' in all other situations.

LDPC Encoding Method

This object has a method encode that is used to encode signals.

codeword = encode(l, msg) encodes msg using the LDPC code
specified by the LDPC encoder object l. msg must be a binary
1-by-NumInfoBits vector.

codeword is a binary 1-by-BlockLength vector. The first NumInfoBits
bits are the information bits (msg) and the last NumParityBits bits are
the parity bits. The modulo-2 matrix product of ParityCheckMatrix
and codeword' is a zero vector.

HcT = 0
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Usage Example

This example demonstrates the use of this object.

% Construct a default LDPC encoder object
l = fec.ldpcenc;

% Generate a random binary message
msg = randint(1,l.NumInfoBits,2);

% Encode the message
codeword = encode(l, msg);

% Verify the parity checks (which should be a zero vector)
paritychecks = mod(l.ParityCheckMatrix * codeword', 2);

Example with a Parity-Check Matrix

This example demonstrates the construction of an LDPC encoder object
with a parity-check matrix.

i = [1 3 2 4 1 2 3 3 4]; % row indices of 1s
j = [1 1 2 2 3 4 4 5 6]; % column indices of 1s
H = sparse(i,j,ones(length(i),1)); % parity-check matrix H
l = fec.ldpcenc(H);

References [1] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge,
MA, MIT Press, 1963.

See Also dvbs2ldpc, fec.ldpcdec, modem
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Purpose Construct BCH decoder object

Syntax h = fec.bchdec

h = fec.bchdec(N,K)

h = fec.bchdec(property1, value, ...)

h = fec.bchdec(bchenc_object)

Description h = fec.bchdec constructs a BCH decoder with default properties. It
is equivalent to: dec = fec.bchdec(7,4)

h = fec.bchdec(N,K) constructs an (N,K) BCH decoder object dec.

h = fec.bchdec(property1, value1, ...) constructs a BCH decoder
object dec with properties as specified by PROPERTY/VALUE pairs.

h = fec.bchdec(bchend_object) constructs a BCH decoder object
dec by reading the property values from the BCH encoder object
bchenc_object.

Properties A BCH decoder object has the following properties, which are all
writable except for the ones explicitly noted otherwise.

Property Description

Type The type of decoder object.
This property also displays
the effective message length
and codeword length, taking
shortening and puncturing into
consideration. This property is
not writable.

N The codeword length of the base
code, not including shortening or
puncturing.
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Property Description

K The uncoded message length, not
including shortening.

T The number of errors the base
code is capable of correcting.
This property is not writable.

ShortenedLength The number of bits by which the
code has been shortened.

ParityPosition Must be ’beginning’ or ’end’.
Specifies if parity bits should
appear at the beginning or end
of the codeword.

PuncturePattern Indicates which parity bits in a
codeword are punctured. This
binary-valued vector is of length
N-K. Values of “0” indicate bits
that are punctured, and values
of “1” indicate bits that are not.

GenPoly The generator polynomial
for the code. GenPoly must
be a Galois row vector that
lists the coefficients, in order
of descending powers, of the
generator polynomial.

Methods
decoded = decode(dec,code)

Attempts to decode the received signal in CODE using the BCH decoder
DEC. CODE must be a vector of binary elements, with an integer
multiple of N-ShortenedLength-(Number of punctures) elements per
column. There may be multiple codewords per channel, where each
group of N-ShortenedLength-(Number of punctures) input elements
represents one codeword to be decoded. Each column of CODE is
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considered to be a separate channel, with the same BCH code applied
to each channel.
decoded = decode(dec,code,erasures)

Attempts to decode the received signal with the additional erasure
information provided by the ERASURES vector. The size of the
ERASURES vector must be the same as the size of CODE, where a 0
marks no erasure, and a 1 marks an erased bit.
[decoded,cnumberr] = DECODE(...)

Returns an array CNUMERR with the same number of columns as
CODE. Within each column of CNUMERR, each element is the number
of corrected errors in the corresponding codeword of CODE. A value of -1
in CNUMERR indicates a decoding failure in that codeword in CODE.
[decoded,cnumberr,ccode] = decode(...)

Returns CCODE, the corrected version of CODE. The array CCODE is
in the same format as CODE. If a decoding failure occurs in a certain
codeword (i.e. full or partial column of CODE), then the corresponding
full or partial column in CCODE contains that full or partial column
unchanged.

Usage
Examples

% Code parameters
n = 7; k =4;
% Construct encoder
coder = fec.bchenc(n,k);
% Message to encode
msg = [0 1 1 0]';
% Perform Coding
code = encode(coder,msg);
% Construct decoder from encoder
decoder = fec.bchdec(coder);
% Introduce 1 error in the codeword
code(end) = 0;
[decoded,cnumerr,ccode] = decode(decoder,code);

% Test for a encoding a punctured RS code
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n = 7; k = 3;
msg = [1 1 1]';
puncVec = [0 1 1 1];

coderNonPunc = fec.rsenc(n,k);
code = encode(coderNonPunc,msg);

coderPunc = copy(coderNonPunc);
coderPunc.puncturepattern = puncVec;
codePunc = encode(coderPunc,msg);

expCode = code([1:k k+find(puncVec)]);
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Purpose Construct BCH encoder object

Syntax h = fec.bchenc

h = fec.bchenc(N,K)

h = fec.bchenc(property1, value1, ...)

h = fec.bchenc(bchdec_object)

Description enc = fec.bchenc constructs a BCH encoder enc with default
properties. It is equivalent to: enc = fec.bchenc(7,4)

enc = fec.bchenc(N,K) constructs an (N,K) BCH encoder object enc.

enc = fec.bchenc(property1, valule1, ...) constructs a BCH
encoder object enc with properties as specified by PROPERTY/VALUE
pairs.

enc = fec.bchenc(bchdec_object) constructs a BCH encoder object
enc by reading the property values from the BCH decoder object
bchdec_object

Properties A BCH encoder object has the following properties, which are all
writable except for the ones explicitly noted otherwise.

Property Description

Type The type of encoder object.
This property also displays
the effective message length
and codeword length, taking
shortening and puncturing into
consideration. This property is
not writable.

N The codeword length of the base
code, not including shortening or
puncturing.

2-229



fec.bchenc

Property Description

K The uncoded message length, not
including shortening.

T The number of errors the base
code is capable of correcting. This
property is not writable.

ShortenedLength The number of bits by which the
code has been shortened.

ParityPosition Must be ’beginning’ or ’end’.
Specifies if parity bits should
appear at the beginning or end of
the codeword.

PuncturePattern Indicates which parity bits in a
codeword are punctured. This
binary-valued vector is of length
N-K. Values of “0” indicate bits
that are punctured, and values of
“1” indicate bits that are not.

GenPoly The generator polynomial
for the code. GenPoly must
be a Galois row vector that
lists the coefficients, in order
of descending powers, of the
generator polynomial.

Methods
CODEWORD = ENCODE(ENC, MSG)

Encodes MSG using the BCH code specified by a BCH encoder
object ENC. MSG must be an array of binary elements, with an
integer multiple of K-ShortenedLength elements per column. There
may be multiple codewords per channel, where each group of
K-ShortenedLength input elements represents one message word to be
encoded. Each column of MSG is considered to be a separate channel,
with the same BCH code applied to each channel.
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Usage
Examples

%Create BCH encoder object.
enc = fec.bchenc(7,4);

% Create a message to be encoded.
msg = [0 1 1 0]';

% Encode msg with the ENCODE function.
code = encode(enc,msg);

% Create a shortened encoder
encShort = copy(enc);
encShort.ShortenedLength = 1;

% Create a shortened message
msgShort = [0 1 1]';

codeShort = encode(encShort,msgShort);

% Create a punctured encoder
encPunc = copy(enc);
encPunc.PuncturePattern = [1 0 1];

% Create a punctured message
codePunc = encode(encPunc,msg);

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.
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Purpose Construct Reed-Solomon decoder object

Syntax h = fec.rsdec

h = fec.rsdec(N,K)

h = fec.rsdec(property1, value1, ...)

h = fec.rsdec(rsenc_object)

Description dec = fec.rsdec constructs a Reed-Solomon decoder with default
properties. It is equivalent to dec = fec.rsdec(7,3)

dec = fec.rsdec(N,K) constructs an (N,K) Reed-Solomon decoder
object dec.

dec = fec.rsdec(property1, value1, ...) constructs a
Reed-Solomon decoder object dec with properties as specified by
PROPERTY/VALUE pairs.

dec = fec.rsdec(rsenc_object) constructs a Reed-Solomon decoder
object dec by reading the property values from the Reed-Solmon encoder
object rsenc_object.

Properties A Reed-Solomon decoder object has the following properties, all of which
are writable, except for the ones explicitly noted otherwise.

Property Description

Type The type of decoder object. This property
also displays the effective message length
and codeword length, taking shortening
and puncturing into consideration. This
property is not writable.

N The codeword length of the base code, not
including shortening or puncturing.

K The uncoded message length, not including
shortening.

T The number of errors the base code is
capable of correcting. This property is not
writable.
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Property Description

ShortenedLength The number of symbols by which the code
has been shortened.

ParityPosition Must be ’beginning’ or ’end’. Specifies if
parity bits should appear at the beginning
or end of the codeword.

PuncturePattern Indicates which parity symbols in
a codeword are punctured. This
binary-valued vector is of length N-K.
Values of “0” indicate symbols that are
punctured, and values of “1” indicate
symbols that are not.

GenPoly The generator polynomial for the code.
GENPOLY must be a Galois row vector
that lists the coefficients, in order of
descending powers, of the generator
polynomial.

Methods

The fec.rsdec object has a method for encoding messages.
DECODED = DECODE(DEC,CODE)

Atempts to decode the received signal in CODE using the Reed-Solomon
decoder DEC. CODE must be a vector of integer elements, with
an integer multiple of N-ShortenedLength-(Number of punctures)
elements per column. There may be multiple codewords per channel,
where each group of N-ShortenedLength-(Number of punctures) input
elements represents one codeword to be decoded. Each column of CODE
is considered to be a separate channel, with the same Reed-Solomon
code applied to each channel.
DECODED = DECODE(DEC,CODE,ERASURES)

Attempts to decode the received signal with the additional erasure
information provided by the ERASURES vector. The size of the
ERASURES vector must be the same as the size of CODE, where a 0
marks no erasure, and a 1 marks an erased symbol.
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[DECODED,CNUMERR] = DECODE(...)

Returns an array CNUMERR with the same number of columns as
CODE. Within each column of CNUMERR, each element is the number
of corrected errors in the corresponding codeword of CODE. A value of -1
in CNUMERR indicates a decoding failure in that codeword in CODE.
[DECODED,CNUMERR,CCODE] = DECODE(...)

Returns CCODE, the corrected version of CODE. The array CCODE is
in the same format as CODE. If a decoding failure occurs in a certain
codeword (i.e. full or partial column of CODE), then the corresponding
full or partial column in CCODE contains that full or partial column
unchanged.

Usage Examples

% Code parameters
n = 7; k = 3;
% Construct encoder
coder = fec.rsenc(n,k);
% Message to encode
msg = [0 1 2]';
% Perform Coding
code = encode(coder,msg);
% Construct decoder from encoder
decoder = fec.rsdec(coder);
% Introduce 1 error in the codeword
code(end) = 0;
[decoded,cnumerr,ccode] = decode(decoder,code);

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.
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Purpose Construct Reed-Solomon encoder object

Syntax enc = fec.rsenc

enc = fec.rsenc(N,K)

enc = fec.rsenc(property1, ...)

enc = fec.rsenc(rsdec_object)

Description enc = fec.rsenc constructs a Reed-Solomon encoder with default
properties equivalent to: enc = rsenc(7,3)

enc = fec.rsenc(N,K) constructs an (N,K) Reed-Solomon encoder
object enc.

enc = fec.rsenc(property1, value1, ...) constructs a
Reed-Solomon encoder object enc with properties as specified by
PROPERTY/VALUE pairs.

enc = fec.rsenc(rsdec_object) constructs a Reed-Solomon encoder
object enc by reading the property values from the RS decoder object
rsdec_object.

Properties A Reed-Solomon encoder object has the following properties, all of which
are writable, except for the ones explicitly noted otherwise.

Property Description

Type The type of encoder object. This property
also displays the effective message length
and codeword length, taking shortening
and puncturing into consideration. This
property is not writable.

N The codeword length of the base code, not
including shortening or puncturing.

K The uncoded message length, not including
shortening.

T The number of errors the base code is
capable of correcting. This property is not
writable.
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Property Description

ShortenedLength The number of symbols by which the code
has been shortened.

ParityPosition Must be ’beginning’ or ’end’. Specifies
if parity symbols should appear at the
beginning or end of the codeword.

GenPoly The generator polynomial for the code.
GenPoly must be a Galois row vector that
lists the coefficients, in order of descending
powers, of the generator polynomial.

Methods

The fec.rsenc object has a method for encoding messages.
codeword =encode(enc, msg)

Encodes MSG using the Reed-Solomon code specified by a Reed-Solomon
encoder object ENC. MSG must be an array of integer elements,
with an integer multiple of K-ShortenedLength elements per column.
There may be multiple codewords per channel, where each group of
K-ShortenedLength input elements represents one message word to be
encoded. Each column of MSG is considered to be a separate channel,
with the same Reed-Solomon code applied to each channel.

Usage Examples

% Create Reed-Solomon encoder object.
enc = fec.rsenc(7,3);

% Create a message to be encoded.
msg = [0 1 0]';

% Encode msg with the ENCODE function.
code = encode(enc,msg);

% Create a shortened encoder
encShort = copy(enc);
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encShort.ShortenedLength = 1;

% Create a shortened message
msgShort = [0 1]';

codeShort = encode(encShort,msgShort);
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Purpose Discrete Fourier transform

Syntax fft(x)

Description fft(x) is the discrete Fourier transform (DFT) of the Galois vector x.
If x is in the Galois field GF(2m), the length of x must be 2m-1.

Examples m = 4;
n = 2^m-1;
x = gf(randint(n,1,2^m),m); % Random vector
y = fft(x); % Transform of x
z = ifft(y); % Inverse transform of y
ck = isequal(z,x) % Check that ifft(fft(x)) recovers x.

The output is

ck =

1

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, x must be in the Galois field GF(2m), where
m is an integer between 1 and 8.

Algorithm If x is a column vector, fft applies dftmtx to the primitive element of
the Galois field and multiplies the resulting matrix by x.

See Also ifft, dftmtx, “Signal Processing Operations in Galois Fields”

2-238



filter (channel)

Purpose Filter signal with channel object

Syntax y = filter(chan,x)

Description y = filter(chan,x) processes the baseband signal vector x with the
channel object chan. The result is the signal vector y. The final state
of the channel is stored in chan. You can construct chan using either
rayleighchan or ricianchan. The filter function assumes x is
sampled at frequency 1/ts, where ts equals the InputSamplePeriod
property of chan.

If chan.ResetBeforeFiltering is 0, filter uses the existing state
information in chan when starting the filtering operation. As a
result, filter(chan,[x1 x2]) is equivalent to [filter(chan,x1)
filter(chan,x2)]. To reset chan manually, apply the reset function
to chan.

If chan.ResetBeforeFiltering is 1, filter resets chan before starting
the filtering operation, overwriting any previous state information in
chan.

Examples Examples using this function are in “Using Fading Channels”.

See Also rayleighchan, ricianchan, reset, “Fading Channels”

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.
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Purpose 1-D digital filter over Galois field

Syntax y = filter(b,a,x)
[y,zf] = filter(b,a,x)

Description y = filter(b,a,x) filters the data in the vector x with the filter
described by numerator coefficient vector b and denominator coefficient
vector a. The vectors b, a, and x must be Galois vectors in the same
field. If a(1) is not equal to 1, filter normalizes the filter coefficients
by a(1). As a result, a(1) must be nonzero.

The filter is a “Direct Form II Transposed” implementation of the
standard difference equation below.

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) ...
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[y,zf] = filter(b,a,x) returns the final conditions of the filter
delays in the Galois vector zf. The length of the vector zf is
max(size(a),size(b))-1.

Examples An example is in “Huffman Coding”.
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Purpose Estimate delay(s) between signals

Syntax D = finddelay(X,Y)
D = finddelay(...,MAXLAG)

Description D = finddelay(X,Y), where X and Y are row or column vectors, returns
an estimate of the delay D between X and Y, where X serves as the
reference vector. If Y is delayed with respect to X, then D is positive. If Y
is advanced with respect to X, then D is negative. Delays in X and Y can
be introduced by pre-pending zeros.

X and Y need not be exact delayed copies of each other, as
finddelay(X,Y) returns an estimate of the delay via cross-correlation.
However this estimated delay has a useful meaning only if there is
sufficient correlation between delayed versions of X and Y. Also, if
several delays are possible, as in the case of periodic signals, the delay
with the smallest absolute value is returned. In the case that both a
positive and a negative delay with the same absolute value are possible,
the positive delay is returned.

D = finddelay(X,Y), where X is a matrix of sizeMX-by-NX (MX>1 and
NX>1) and Y is a matrix of size MY-by-NY (MY>1 and NY>1), returns
a row vector D of estimated delays between each column of X and the
corresponding column of Y. With this usage the number of columns of X
must be equal to the number of columns of Y (i.e., NX=NY).

D = finddelay(...,MAXLAG), uses MAXLAG as the maximum correlation
window size used to find the estimated delay(s) between X and Y. The
usage of MAXLAG is detailed in the table below.

By default, MAXLAG is equal to MAX(LX, LY)-1 for two vector inputs
(where LX and LY are the lengths of X and Y, respectively), MAX(MX,
MY)-1 for two matrix inputs, and MAX(LX, MY)-1 or MAX(MX, LY)-1
for one vector input and one matrix input. If MAXLAG is input as [], it
is replaced by the default value. If any element of MAXLAG is negative,
it is replaced by its absolute value. If any element of MAXLAG is not
integer-valued, or is complex, Inf, or NaN, then finddelay returns an
error.
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The calculation of the vector of estimated delays, D, depends on X, Y, and
MAXLAG as shown in the following table.

MAXLAG X Y D is calculated by...

Integer-valued
scalar

Row or column
vector or matrix

Row or column
vector or matrix

Cross-correlating the columns
of X and Y over a range of lags
-MAXLAG:MAXLAG.

Integer-valued
row or column
vector

Row or column
vector of length
LX ≥ 1

Matrix of size
MY-by-NY
(MY>1, NY>1)

Cross-correlating X and column
j of Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NY.

Integer-valued
row or column
vector

Matrix of size
MX-by-NX
(MX>1, NX>1)

Row or column
vector of length
LY ≥ 1

Cross-correlating column j of
X and Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NX.

Integer-valued
row or column
vector

Matrix of size
MX-by-NX
(MX>1, NX>1)

Matrix of size
MY-by-NY
(MY>1,
NY=NX>1)

Cross-correlating column j of X and
column j of Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NY.

Treating X as Multiple Channels

If you wish to treat a row vector X of length LX as comprising one
sample from LX different channels, you need to append one or more
rows of zeros to X so that it appears as a matrix. Then each column
of X will be considered a channel.

For example, X = [1 1 1 1] is considered a single channel comprising
four samples. To treat it as four different channels, each channel
comprising one sample, define a new matrix Xm:

Xm = [1 1 1 1;
0 0 0 0];

Each column of Xm corresponds to a single channel, each one containing
the samples 1 and 0.
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Theory
and
Algorithm

The finddelay function uses the xcorr function of Signal Processing
Toolbox to determine the cross-correlation between each pair of
signals at all possible lags specified by the user. The normalized
cross-correlation between each pair of signals is then calculated. The
estimated delay is given by the negative of the lag for which the
normalized cross-correlation has the largest absolute value.

If more than one lag leads to the largest absolute value of the
cross-correlation, such as in the case of periodic signals, the delay is
chosen as the negative of the smallest (in absolute value) of such lags.

Pairs of signals need not be exact delayed copies of each other. However,
the estimated delay has a useful meaning only if there is sufficient
correlation between at least one pair of the delayed signals.

Examples X and Y Are Vectors, and MAXLAG Is Not Specified

The following shows Y being delayed with respect to X by two samples.

X = [1 2 3];
Y = [0 0 1 2 3];
D = finddelay(X,Y)

The result is D = 2.

Here is a case of Y advanced with respect to X by three samples.

X = [0 0 0 1 2 3 0 0]';
Y = [1 2 3 0]';
D = finddelay(X,Y)

The result is D = -3.

The following illustrates a case where Y is aligned with X but is noisy.

X = [0 0 1 2 3 0];
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];
D = finddelay(X,Y)

The result is D = 0.
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If Y is a periodic version of X, the smallest possible delay is returned.

X = [0 1 2 3];
Y = [1 2 3 0 0 0 0 1 2 3 0 0];
D = finddelay(X,Y)

The result is D = -1.

X is a Vector, Y a Matrix, and MAXLAG Is a Scalar

MAXLAG is specified as a scalar (same maximum window sizes).

X = [0 1 2];
Y = [0 1 0 0;

1 2 0 0;
2 0 1 0;
0 0 2 1];

MAXLAG = 3;
D = finddelay(X,Y,MAXLAG)

The result is D = [0 -1 1 1].

X and Y Are Matrices, and MAXLAG Is Not Specified

X = [0 1 0 0;
1 2 0 0;
2 0 1 0;
1 0 2 1;
0 0 0 2];

Y = [0 0 1 0;
1 1 2 0;
2 2 0 1;
1 0 0 2;
0 0 0 0];

D = finddelay(X,Y)

The result is D = [0 -1 -2 -1].
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X and Y Are Matrices, and MAXLAG Is Specified

X = [0 1 0 0;
1 2 0 0;
2 0 1 0;
1 0 2 1;
0 0 0 2];

Y = [0 0 1 0;
1 1 2 0;
2 2 0 1;
1 0 0 2;
0 0 0 0];

MAXLAG = [10 10 20 20];
D = finddelay(X,Y,MAXLAG)

The result is D = [0 1 -2 -1].

See Also alignsignals, xcorr
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Purpose Frequency demodulation

Syntax z = fmdemod(y,Fc,Fs,freqdev)
z = fmdemod(y,Fc,Fs,freqdev,ini_phase)

Description z = fmdemod(y,Fc,Fs,freqdev) demodulates the modulating signal
z from the carrier signal using frequency demodulation. The carrier
signal has frequency Fc (Hz) and sampling rate Fs (Hz), where Fs must
be at least 2*Fc. The freqdev argument is the frequency deviation (Hz)
of the modulated signal y.

z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase
of the modulated signal, in radians.

Examples An example using fmdemod is on the reference page for fmmod.

See Also fmmod, pmmod, pmdemod, “Modulation”
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Purpose Frequency modulation

Syntax y = fmmod(x,Fc,Fs,freqdev)
y = fmmod(x,Fc,Fs,freqdev,ini_phase)

Description y = fmmod(x,Fc,Fs,freqdev) modulates the message signal x using
frequency modulation. The carrier signal has frequency Fc (Hz) and
sampling rate Fs (Hz), where Fs must be at least 2*Fc. The freqdev
argument is the frequency deviation constant (Hz) of the modulated
signal.

y = fmmod(x,Fc,Fs,freqdev,ini_phase) specifies the initial phase of
the modulated signal, in radians.

Examples The code below modulates a multichannel signal using fmmod and
demodulates it using fmdemod.

Fs = 8000; % Sampling rate of signal
Fc = 3000; % Carrier frequency
t = [0:Fs]'/Fs; % Sampling times
s1 = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Channel 1
s2 = sin(2*pi*150*t)+2*sin(2*pi*900*t); % Channel 2
x = [s1,s2]; % Two-channel signal
dev = 50; % Frequency deviation in modulated signal
y = fmmod(x,Fc,Fs,dev); % Modulate both channels.
z = fmdemod(y,Fc,Fs,dev); % Demodulate both channels.

See Also fmdemod, ammod, pmmod, “Modulation”
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Purpose Frequency shift keying demodulation

Syntax z = fskdemod(y,M,freq_sep,nsamp)
z = fskdemod(y,M,freq_sep,nsamp,Fs)
z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order)

Description z = fskdemod(y,M,freq_sep,nsamp) noncoherently demodulates the
complex envelope y of a signal using the frequency shift key method.
M is the alphabet size and must be an integer power of 2. freq_sep is
the frequency separation between successive frequencies in Hz. nsamp
is the required number of samples per symbol and must be a positive
integer greater than 1. The sampling frequency is 1 Hz. If y is a matrix
with multiple rows and columns, the function processes the columns
independently.

z = fskdemod(y,M,freq_sep,nsamp,Fs) specifies the sampling
frequency in Hz.

z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order) specifies
how the function assigns binary words to corresponding integers. If
symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a
Gray-coded ordering.

Examples The example below illustrates FSK modulation and demodulation over
an AWGN channel.

M = 2; k = log2(M);
EbNo = 5;
Fs = 16; nsamp = 17; freqsep = 8;
msg = randint(5000,1,M); % Random signal
txsig = fskmod(msg,M,freqsep,nsamp,Fs); % Modulate.
msg_rx = awgn(txsig,EbNo+10*log10(k)-10*log10(nsamp),...

'measured',[],'dB'); % AWGN channel
msg_rrx = fskdemod(msg_rx,M,freqsep,nsamp,Fs); % Demodulate
[num,BER] = biterr(msg,msg_rrx) % Bit error rate
BER_theory = berawgn(EbNo,'fsk',M,'noncoherent') % Theoretical BER
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The output is shown below. Your BER value might vary because the
example uses random numbers.

BER =

0.1086

BER_theory =

0.1029

See Also fskmod, pskmod, pskdemod, “Modulation”
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Purpose Frequency shift keying modulation

Syntax y = fskmod(x,M,freq_sep,nsamp)
y = fskmod(x,M,freq_sep,nsamp,Fs)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)
y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order)

Description y = fskmod(x,M,freq_sep,nsamp) outputs the complex envelope y of
the modulation of the message signal x using frequency shift keying
modulation. M is the alphabet size and must be an integer power of
2. The message signal must consist of integers between 0 and M-1.
freq_sep is the desired separation between successive frequencies
in Hz. nsamp denotes the number of samples per symbol in y and
must be a positive integer greater than 1. The sampling rate of y is 1
Hz. By the Nyquist sampling theorem, freq_sep and M must satisfy
(M-1)*freq_sep <= 1. If x is a matrix with multiple rows and columns,
the function processes the columns independently.

y = fskmod(x,M,freq_sep,nsamp,Fs) specifies the sampling rate
of y in Hz. Because the Nyquist sampling theorem implies that the
maximum frequency must be no larger than Fs/2, the inputs must
satisfy (M-1)*freq_sep <= Fs.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont) specifies the phase
continuity. Set phase_cont to 'cont' to force phase continuity across
symbol boundaries in y, or 'discont' to avoid forcing phase continuity.
The default is 'cont'.

y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order)
specifies how the function assigns binary words to corresponding
integers. If symbol_order is set to 'bin' (default), the function uses
a natural binary-coded ordering. If symbol_order is set to 'gray', it
uses a Gray-coded ordering.

Examples The example below illustrates the syntax of fskmod using a random
signal.

M = 4; freqsep = 8; nsamp = 8; Fs = 32;
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x = randint(1000,1,M); % Random signal
y = fskmod(x,M,freqsep,nsamp,Fs); % Modulate.
ly = length(y);
% Create an FFT plot.
freq = [-Fs/2 : Fs/ly : Fs/2 - Fs/ly];
Syy = 10*log10(fftshift(abs(fft(y))));
plot(freq,Syy)

See Also fskdemod, pskmod, pskdemod, “Modulation”
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Purpose Convert between parity-check and generator matrices

Syntax parmat = gen2par(genmat)
genmat = gen2par(parmat)

Description parmat = gen2par(genmat) converts the standard-form binary generator
matrix genmat into the corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary
parity-check matrix parmat into the corresponding generator matrix
genmat.

The standard forms of the generator and parity-check matrices for an
[n,k] binary linear block code are shown in the table below

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n
.

where Ik is the identity matrix of size k and the ' symbol indicates
matrix transpose. Two standard forms are listed for each type, because
different authors use different conventions. For binary codes, the minus
signs in the parity-check form listed above are irrelevant; that is, -1 = 1
in the binary field.

Examples The commands below convert the parity-check matrix for a Hamming
code into the corresponding generator matrix and back again.

parmat = hammgen(3)
genmat = gen2par(parmat)
parmat2 = gen2par(genmat) % Ans should be the same as parmat above

The output is
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parmat =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

genmat =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

parmat2 =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

See Also cyclgen, hammgen, “Block Coding”
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Purpose General quadrature amplitude demodulation

Syntax z = genqamdemod(y,const)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.genqamdemod instead.

z = genqamdemod(y,const) demodulates the complex envelope y of a
quadrature amplitude modulated signal. The complex vector const
specifies the signal mapping. If y is a matrix with multiple rows, the
function processes the columns independently.

Examples The reference page for genqammod has an example that uses
genqamdemod.

See Also genqammod, qammod, qamdemod, pammod, pamdemod, “Modulation”
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Purpose General quadrature amplitude modulation

Syntax y = genqammod(x,const)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.genqammod instead.

y = genqammod(x,const) outputs the complex envelope y of the
modulation of the message signal x using quadrature amplitude
modulation. The message signal must consist of integers between 0
and length(const)-1. The complex vector const specifies the signal
mapping. If x is a matrix with multiple rows, the function processes
the columns independently.

Examples The code below plots a signal constellation that has a hexagonal
structure. It also uses genqammod and genqamdemod to modulate and
demodulate a message [3 8 5 10 7] using this constellation.

% Describe hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];

quadr = [0 1 -1 2 -2 1 -1 0];

inphase = [inphase;-inphase]; inphase = inphase(:);

quadr = [quadr;quadr]; quadr = quadr(:);

const = inphase + j*quadr;

% Plot constellation.

h = scatterplot(const);

% Modulate message using this constellation.

x = [3 8 5 10 7]; % Message signal

y = genqammod(x,const);

z = genqamdemod(y,const); % Demodulate.

% Plot modulated signal in same figure.

hold on; scatterplot(y,1,0,'ro',h);
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legend('Constellation','Modulated signal','Location','NorthWest'); % Include legend.

hold off;

Another example using this function is the Gray-coded constellation
example in “Examples of Signal Constellation Plots”.

See Also genqamdemod, qammod, qamdemod, pammod, pamdemod, “Modulation”
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Purpose Create Galois field array

Syntax x_gf = gf(x,m)
x_gf = gf(x,m,prim_poly)
x_gf = gf(x)

Description x_gf = gf(x,m) creates a Galois field array from the matrix x. The
Galois field has 2^m elements, where m is an integer between 1 and 16.
The elements of x must be integers between 0 and 2^m-1. The output
x_gf is a variable that MATLAB recognizes as a Galois field array,
rather than an array of integers. As a result, when you manipulate
x_gf using operators or functions such as + or det, MATLAB works
within the Galois field you have specified.

Note To learn how to manipulate x_gf using familiar MATLAB
operators and functions, see “Galois Field Computations”. To learn how
the integers in x represent elements of GF(2^m), see “How Integers
Correspond to Galois Field Elements”.

x_gf = gf(x,m,prim_poly) is the same as the previous syntax,
except it uses the primitive polynomial prim_poly to define the field.
prim_poly is the integer representation of a primitive polynomial. For
example, the number 41 represents the polynomial D^5+D^2+1 because
the binary form of 37 is 1 0 0 1 0 1. For more information about the
primitive polynomial, see “Specifying the Primitive Polynomial”.

x_gf = gf(x) creates a GF(2) array from the matrix x. Each element
of x must be 0 or 1.

Default Primitive Polynomials

The table below lists the primitive polynomial that gf uses by default
for each Galois field GF(2^m). To use a different primitive polynomial,
specify prim_poly as an input argument when you invoke gf.
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m Default Primitive
Polynomial

Integer
Representation

1 D + 1 3
2 D^2 + D + 1 7
3 D^3 + D + 1 11
4 D^4 + D + 1 19
5 D^5 + D^2 + 1 37
6 D^6 + D + 1 67
7 D^7 + D^3 + 1 137
8 D^8 + D^4 + D^3 +

D^2 + 1
285

9 D^9 + D^4 + 1 529
10 D^10 + D^3 + 1 1033
11 D^11 + D^2 + 1 2053
12 D^12 + D^6 + D^4 +

D + 1
4179

13 D^13 + D^4 + D^3 +
D + 1

8219

14 D^14 + D^10 + D^6
+ D + 1

17475

15 D^15 + D + 1 32771
16 D^16 + D^12 + D^3

+ D + 1
69643

Examples For examples that use gf, see

• “Example: Creating Galois Field Variables”

• “Example: Representing a Primitive Element”
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• Other sample code within “Galois Field Computations”

• The Galois field demonstration: type showdemo gfdemo.

See Also gftable, list of functions and operators for Galois field computations,
gfdemo, “Galois Field Computations”
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Purpose Add polynomials over Galois field

Syntax c = gfadd(a,b)
c = gfadd(a,b,p)
c = gfadd(a,b,p,len)
c = gfadd(a,b,field)

Description
Note This function performs computations in GF(pm) where p is prime.
To work in GF(2m), apply the + operator to Galois arrays of equal size.
For details, see “Example: Addition and Subtraction”.

c = gfadd(a,b) adds two GF(2) polynomials, a and b. If a and b are
vectors of the same orientation but different lengths, then the shorter
vector is zero-padded. If a and b are matrices they must be of the same
size.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime
number. a, b, and c are row vectors that give the coefficients of
the corresponding polynomials in order of ascending powers. Each
coefficient is between 0 and p-1. If a and b are matrices of the same size,
the function treats each row independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous
syntax, except that it returns a row vector of length len. The output c
is a truncated or extended representation of the sum. If the row vector
corresponding to the sum has fewer than len entries (including zeros),
extra zeros are added at the end; if it has more than len entries, entries
from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a
positive integer. a and b are the exponential format of the two elements,
relative to some primitive element of GF(pm). field is the matrix
listing all elements of GF(pm), arranged relative to the same primitive
element. c is the exponential format of the sum, relative to the same
primitive element. See “Representing Elements of Galois Fields” for an
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explanation of these formats. If a and b are matrices of the same size,
the function treats each element independently.

Examples In the code below, sum5 is the sum of 2 + 3x + x2 and 4 + 2x + 3x2 over
GF(5), and linpart is the degree-one part of sum5.

sum5 = gfadd([2 3 1],[4 2 3],5)
linpart = gfadd([2 3 1],[4 2 3],5,2)

The output is

sum5 =

1 0 4

linpart =

1 0

The code below shows that A2 + A4 = A1, where A is a root of the
primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
g = gfadd(2,4,field)

The output is

g =

1

Other examples are in “Arithmetic in Galois Fields”.

See Also gfsub, gfconv, gfmul, gfdeconv, gfdiv, gftuple, “Galois Fields of
Odd Characteristic” on page 1-13
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Purpose Multiply polynomials over Galois field

Syntax c = gfconv(a,b)
c = gfconv(a,b,p)
c = gfconv(a,b,field)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the conv function with Galois arrays.
For details, see “Multiplication and Division of Polynomials”.

The gfconv function multiplies polynomials over a Galois field. (To
multiply elements of a Galois field, use gfmul instead.) Algebraically,
multiplying polynomials over a Galois field is equivalent to convolving
vectors containing the polynomials’ coefficients, where the convolution
operation uses arithmetic over the same Galois field.

c = gfconv(a,b) multiplies two GF(2) polynomials, a and b. The
polynomial degree of the resulting GF(2) polynomial c equals the degree
of a plus the degree of b.

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a
prime number. a, b, and c are row vectors that give the coefficients
of the corresponding polynomials in order of ascending powers. Each
coefficient is between 0 and p-1.

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where p
is a prime number and m is a positive integer. a, b, and c are row vectors
that list the exponential formats of the coefficients of the corresponding
polynomials, in order of ascending powers. The exponential format is
relative to some primitive element of GF(pm). field is the matrix listing
all elements of GF(pm), arranged relative to the same primitive element.
See “Representing Elements of Galois Fields” for an explanation of
these formats.
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Examples The command below shows that

( )( )1 24 2 2 3 5 6+ + + = + + + +x x x x x x x x x

over GF(3).

gfc = gfconv([1 1 0 0 1],[0 1 1],3)

The output is

gfc =

0 1 2 1 0 1 1

The code below illustrates the identity

( )x x x xr s p rp sp+ = +

for the case in which p = 7, r = 5, and s = 3. (The identity holds when p
is any prime number, and r and s are positive integers.)

p = 7; r = 5; s = 3;
a = gfrepcov([r s]); % x^r + x^s

% Compute a^p over GF(p).
c = 1;
for ii = 1:p

c = gfconv(c,a,p);
end;

% Check whether c = x^(rp) + x^(sp).
powers = [];
for ii = 1:length(c)

if c(ii)~=0
powers = [powers, ii];

end;
end;
if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])
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disp('The identity is proved for this case of r, s, and p.')
end

See Also gfdeconv, gfadd, gfsub, gfmul, gftuple, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Produce cyclotomic cosets for Galois field

Syntax c = gfcosets(m)
c = gfcosets(m,p)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the cosets function.

c = gfcosets(m) produces cyclotomic cosets mod(2m - 1). Each row of
the output GFCS contains one cyclotomic coset.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(p^m), where
m is a positive integer and p is a prime number.

The output matrix c is structured so that each row represents one coset.
The row represents the coset by giving the exponential format of the
elements of the coset, relative to the default primitive polynomial for
the field. For a description of exponential formats, see “Representing
Elements of Galois Fields”.

The first column contains the coset leaders. Because the lengths of
cosets might vary, entries of NaN are used to fill the extra spaces when
necessary to make c rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal
polynomial. For more details on cyclotomic cosets, see the works listed
in “References” on page 2-266.

Examples The command below finds the cyclotomic cosets for GF(9).

c = gfcosets(2,3)

The output is

c =

0 NaN
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1 3
2 6
4 NaN
5 7

The gfminpol function can check that the elements of, for example, the
third row of c indeed belong in the same coset.

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

The output is

m =

2 0 1
2 0 1

See Also gfminpol, gfprimdf, gfroots, “Galois Fields of Odd Characteristic”
on page 1-13

References [1] Blahut, Richard E., Theory and Practice of Error Control Codes,
Reading, MA, Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Englewood Cliffs, NJ, Prentice-Hall,
1983.

2-266



gfdeconv

Purpose Divide polynomials over Galois field

Syntax [quot,remd] = gfdeconv(b,a)
[quot,remd] = gfdeconv(b,a,p)
[quot,remd] = gfdeconv(b,a,field)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the deconv function with Galois arrays.
For details, see “Multiplication and Division of Polynomials”.

The gfdeconv function divides polynomials over a Galois field. (To
divide elements of a Galois field, use gfdiv instead.) Algebraically,
dividing polynomials over a Galois field is equivalent to deconvolving
vectors containing the polynomials’ coefficients, where the deconvolution
operation uses arithmetic over the same Galois field.

[quot,remd] = gfdeconv(b,a) computes the quotient quot and
remainder remd of the division of b by a in GF(2).

[quot,remd] = gfdeconv(b,a,p) divides the polynomial b by the
polynomial a over GF(p) and returns the quotient in quot and the
remainder in remd. p is a prime number. b, a, quot, and remd are row
vectors that give the coefficients of the corresponding polynomials in
order of ascending powers. Each coefficient is between 0 and p-1.

[quot,remd] = gfdeconv(b,a,field) divides the polynomial b by
the polynomial a over GF(pm) and returns the quotient in quot and
the remainder in remd. Here p is a prime number and m is a positive
integer. b, a, quot, and remd are row vectors that list the exponential
formats of the coefficients of the corresponding polynomials, in order of
ascending powers. The exponential format is relative to some primitive
element of GF(pm). field is the matrix listing all elements of GF(pm),
arranged relative to the same primitive element. See “Representing
Elements of Galois Fields” for an explanation of these formats.
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Examples The code below shows that

( ) ( )x x x x x+ + ÷ + = +3 4 31 1 2 Remainder 

in GF(3). It also checks the results of the division.

p = 3;
b = [0 1 0 1 1]; a = [1 1];
[quot, remd] = gfdeconv(b,a,p)
% Check the result.
bnew = gfadd(gfconv(quot,a,p),remd,p);
if isequal(bnew,b)

disp('Correct.')
end;

The output is below.

quot =

1 0 0 1

remd =

2

Correct.

Working over GF(3), the code below outputs those polynomials of the
form xk - 1 (k = 2, 3, 4,..., 8) that 1 + x2 divides evenly.

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1

b = gfrepcov(ii); % x^ii
b(1) = p-1; % -1+x^ii
[quot, remd] = gfdeconv(b,a,p);
% Display -1+x^ii if a divides it evenly.
if remd==0
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multiple{ii}=b;
gfpretty(b)

end
end

The output is below.

4
2 + X

8
2 + X

In light of the discussion in “Algorithm” on page 2-282 on the gfprimck
reference page, along with the irreducibility of 1 + x2 over GF(3), this
output indicates that 1 + x2 is not primitive for GF(9).

Algorithm The algorithm of gfdeconv is similar to that of the MATLAB function
deconv.

See Also gfconv, gfadd, gfsub, gfdiv, gftuple, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Divide elements of Galois field

Syntax quot = gfdiv(b,a)
quot = gfdiv(b,a,p)
quot = gfdiv(b,a,field)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), apply the ./ operator to Galois arrays. For
details, see “Example: Division”.

The gfdiv function divides elements of a Galois field. (To divide
polynomials over a Galois field, use gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) element-by-element. a and
b are scalars, vectors or matrices of the same size. Each entry in a and b
represents an element of GF(2). The entries of a and b are either 0 or 1.

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient.
p is a prime number. If a and b are matrices of the same size, the
function treats each element independently. All entries of b, a, and
quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the
quotient. p is a prime number and m is a positive integer. If a and b
are matrices of the same size, then the function treats each element
independently. All entries of b, a, and quot are the exponential formats
of elements of GF(pm) relative to some primitive element of GF(pm).
field is the matrix listing all elements of GF(pm), arranged relative to
the same primitive element. See “Representing Elements of Galois
Fields” for an explanation of these formats.

In all cases, an attempt to divide by the zero element of the field results
in a “quotient” of NaN.

Examples The code below displays lists of multiplicative inverses in GF(5) and
GF(25). It uses column vectors as inputs to gfdiv.
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% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element inverse')
disp([a, quot1])

% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element inverse')
disp([a, quot2])

See Also gfmul, gfdeconv, gfconv, gftuple, “Galois Fields of Odd Characteristic”
on page 1-13
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Purpose Filter data using polynomials over prime Galois field

Syntax y = gffilter(b,a,x)
y = gffilter(b,a,x,p)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the filter function with Galois arrays.
For details, see “Filtering”.

y = gffilter(b,a,x) filters the data in vector x with the filter
described by vectors b and a. The vectors b, a and x must be in GF(2),
that is, be binary and y is also in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by
vectors a and b. y is the filtered data in GF(p). p is a prime number, and
all entries of a and b are between 0 and p-1.

By definition of the filter, y solves the difference equation

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)
-a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where

• A+1 is the length of the vector a

• B+1 is the length of the vector b

• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x^2+...+a(A+1)x^A

Examples The impulse response of a particular filter is given in the code and
diagram below.
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b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -.1 1.1])

See Also gfconv, gfadd, filter, “Galois Fields of Odd Characteristic” on page
1-13
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Purpose Find particular solution of Ax = b over prime Galois field

Syntax x = gflineq(A,b)
x = gflineq(A,b,p)
[x,vld] = gflineq(...)

Description
Note This function performs computations in GF(p), where p is prime.
To work in GF(2m), apply the \ or / operator to Galois arrays. For
details, see “Solving Linear Equations”.

x = gflineq(A,b) outputs a particular solution of the linear equation
A x = b in GF(2). The elements in a, b and x are either 0 or 1. If the
equation has no solution, then x is empty.

x = gflineq(A,b,p) returns a particular solution of the linear
equation A x = b over GF(p), where p is a prime number. If A is a k-by-n
matrix and b is a vector of length k, x is a vector of length n. Each entry
of A, x, and b is an integer between 0 and p-1. If no solution exists,
x is empty.

[x,vld] = gflineq(...) returns a flag vld that indicates the
existence of a solution. If vld = 1, the solution x exists and is valid; if
vld = 0, no solution exists.

Examples The code below produces some valid solutions of a linear equation over
GF(3).

A = [2 0 1;
1 1 0;
1 1 2];

% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0],3)

The output is below.

x =
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2
1
0

vld =

1

By contrast, the command below finds that the linear equation has
no solutions.

[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)

The output is below.

This linear equation has no solution.

x2 =

[]

vld2 =

0

Algorithm gflineq uses Gaussian elimination.

See Also gfadd, gfdiv, gfroots, gfrank, gfconv, conv, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Find minimal polynomial of Galois field element

Syntax pol = gfminpol(k,m)
pol = gfminpol(k,m,p)
pol = gfminpol(k,prim_poly,p)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the minpol function with Galois arrays.
For details, see “Minimal Polynomials”.

pol = gfminpol(k,m) produces a minimal polynomial for each entry
in k. k must be either a scalar or a column vector. Each entry in k
represents an element of GF(2m) in exponential format. That is, k
represents alpha^k, where alpha is a primitive element in GF(2m).
The ith row of pol represents the minimal polynomial of k(i). The
coefficients of the minimal polynomial are in the base field GF(2) and
listed in order of ascending exponents.

pol = gfminpol(k,m,p) finds the minimal polynomial of Ak over
GF(p), where p is a prime number, m is an integer greater than 1, and A
is a root of the default primitive polynomial for GF(p^m). The format
of the output is as follows:

• If k is a nonnegative integer, pol is a row vector that gives the
coefficients of the minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative
integers, pol is a matrix having len rows; the rth row of pol gives the
coefficients of the minimal polynomial of Ak(r) in order of ascending
powers.

pol = gfminpol(k,prim_poly,p) is the same as the first syntax listed,
except that A is a root of the primitive polynomial for GF(pm) specified
by prim_poly. prim_poly is a row vector that gives the coefficients of
the degree-m primitive polynomial in order of ascending powers.
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Examples The syntax gfminpol(k,m,p) is used in the sample code in
“Characterization of Polynomials”.

See Also gfprimdf, gfcosets, gfroots, “Galois Fields of Odd Characteristic”
on page 1-13
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Purpose Multiply elements of Galois field

Syntax c = gfmul(a,b,p)
c = gfmul(a,b,field)

Description
Note This function performs computations in GF(pm) where p is prime.
To work in GF(2m), apply the .* operator to Galois arrays. For details,
see “Example: Multiplication”.

The gfmul function multiplies elements of a Galois field. (To multiply
polynomials over a Galois field, use gfconv instead.)

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b
is between 0 and p-1. p is a prime number. If a and b are matrices of
the same size, the function treats each element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a
prime number and m is a positive integer. a and b represent elements
of GF(pm) in exponential format relative to some primitive element of
GF(pm). field is the matrix listing all elements of GF(pm), arranged
relative to the same primitive element. c is the exponential format of
the product, relative to the same primitive element. See “Representing
Elements of Galois Fields” for an explanation of these formats. If a
and b are matrices of the same size, the function treats each element
independently.

Examples “Arithmetic in Galois Fields” contains examples. Also, the code below
shows that

A A A2 4 6⋅ =

where A is a root of the primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
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a = gfmul(2,4,field)

The output is

a =

6

See Also gfdiv, gfdeconv, gfadd, gfsub, gftuple, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Polynomial in traditional format

Syntax gfpretty(a) gfpretty(a,st) gfpretty(a,st,n)

Description gfpretty(a) displays a polynomial in a traditional format, using X
as the variable and the entries of the row vector a as the coefficients
in order of ascending powers. The polynomial is displayed in order of
ascending powers. Terms having a zero coefficient are not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the
content of the string st is used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that
the content of the string st is used as the variable instead of X, and each
line of the display has width n instead of the default value of 79.

Note For all syntaxes: If you do not use a fixed-width font, the spacing
in the display might not look correct.

Examples The code below displays statements about the elements of GF(81).

p = 3; m = 4;
ii = randint(1,1,[1,p^m-2]); % Random exponent for prim element
primpolys = gfprimfd(m,'all',p);
[rows, cols] = size(primpolys);
jj = randint(1,1,[1,rows]); % Random primitive polynomial

disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.
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If A is a root of the primitive polynomial

3 4
2 + 2 X + X

then the element

22
A

can also be expressed as

2 3
2 + A + A

See Also gftuple, gfprimdf, “Galois Fields of Odd Characteristic” on page 1-13
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Purpose Check whether polynomial over Galois field is primitive

Syntax ck = gfprimck(a)
ck = gfprimck(a,p)

Description
Note This function performs computations in GF(pm), where p is
prime. If you are working in GF(2m), use the isprimitive function. For
details, see “Finding Primitive Polynomials”.

ck = gfprimck(a) checks whether the degree-m GF(2) polynomial a is
a primitive polynomial for GF(2m), where m = length(a) - 1. The output
ck is as follows:

• -1 if a is not an irreducible polynomial

• 0 if a is irreducible but not a primitive polynomial for GF(pm)

• 1 if a is a primitive polynomial for GF(pm)

ck = gfprimck(a,p) checks whether the degree-m GF(P) polynomial a
is a primitive polynomial for GF(pm). p is a prime number.

This function considers the zero polynomial to be “not irreducible” and
considers all polynomials of degree zero or one to be primitive.

Examples “Characterization of Polynomials” contains examples.

Algorithm An irreducible polynomial over GF(p) of degree at least 2 is primitive if
and only if it does not divide -1 + xk for any positive integer k smaller
than pm-1.

See Also gfprimfd, gfprimdf, gftuple, gfminpol, gfadd, “Galois Fields of Odd
Characteristic” on page 1-13
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References [1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for
Digital Communications, New York, Plenum, 1981.

[2] Krogsgaard, K., and T., Karp, Fast Identification of Primitive
Polynomials over Galois Fields: Results from a Course Project, ICASSP
2005, Philadelphia, PA, 2004.
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Purpose Provide default primitive polynomials for Galois field

Syntax pol = gfprimdf(m)
pol = gfprimdf(m,p)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the primpoly function. For details, see
“Finding Primitive Polynomials”.

pol = gfprimdf(m) outputs the default primitive polynomial pol in
GF(2m).

pol = gfprimdf(m,p) returns the row vector that gives the coefficients,
in order of ascending powers, of the default primitive polynomial for
GF(pm). m is a positive integer and p is a prime number.

Examples The command below shows that 2 + x + x2 is the default primitive
polynomial for GF(52).

pol = gfprimdf(2,5)
pol =

2 1 1

The code below displays the default primitive polynomial for each of the
fields GF(3m), where m ranges between 3 and 5.

for m = 3:5
gfpretty(gfprimdf(m,3))

end

The output is below.

3
1 + 2 X + X
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4
2 + X + X

5
1 + 2 X + X

See Also gfprimck, gfprimfd, gftuple, gfminpol, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Find primitive polynomials for Galois field

Syntax pol = gfprimfd(m,opt,p)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the primpoly function. For details, see
“Finding Primitive Polynomials”.

• If m = 1, pol = [1 1].

• A polynomial is represented as a row containing the coefficients in
order of ascending powers.

pol = gfprimfd(m,opt,p) searches for one or more primitive
polynomials for GF(p^m), where p is a prime number and m is a positive
integer. If m = 1, pol = [1 1]. If m > 1, the output pol depends on
the argument opt as shown in the table below. Each polynomial is
represented in pol as a row containing the coefficients in order of
ascending powers.

opt Significance of pol Format of pol

'min' One primitive
polynomial for
GF(p^m) having the
smallest possible
number of nonzero
terms

The row vector
representing the
polynomial

'max' One primitive
polynomial for
GF(p^m) having the
greatest possible
number of nonzero
terms

The row vector
representing the
polynomial
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opt Significance of pol Format of pol

'all' All primitive
polynomials for
GF(p^m)

A matrix, each row of
which represents one
such polynomial

A positive integer All primitive
polynomials for
GF(p^m) that have
opt nonzero terms

A matrix, each row of
which represents one
such polynomial

Examples The code below seeks primitive polynomials for GF(81) having various
other properties. Notice that fourterms is empty because no primitive
polynomial for GF(81) has exactly four nonzero terms. Also notice that
fewterms represents a single polynomial having three terms, while
threeterms represents all of the three-term primitive polynomials for
GF(81).

p = 3; m = 4; % Work in GF(81).
fewterms = gfprimfd(m,'min',p)
threeterms = gfprimfd(m,3,p)
fourterms = gfprimfd(m,4,p)

The output is below.

fewterms =

2 1 0 0 1

threeterms =

2 1 0 0 1
2 2 0 0 1
2 0 0 1 1
2 0 0 2 1
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No primitive polynomial satisfies the given constraints.

fourterms =

[]

Algorithm gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max',
or omitted, polynomials are constructed by converting decimal integers
to base p. Based on the decimal ordering, gfprimfd returns the first
polynomial it finds that satisfies the appropriate conditions.

See Also gfprimck, gfprimdf, gftuple, gfminpol, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Compute rank of matrix over Galois field

Syntax rk = gfrank(A,p)

Description
Note This function performs computations in GF(pm) where p is prime.
If you are working in GF(2m), use the rank function with Galois arrays.
For details, see “Computing Ranks”.

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where
p is a prime number.

Algorithm gfrank uses an algorithm similar to Gaussian elimination.

Examples In the code below, gfrank says that the matrix A has less than full rank.
This conclusion makes sense because the determinant of A is zero mod p.

A = [1 0 1;
2 1 0;
0 1 1];

p = 3;
det_a = det(A); % Ordinary determinant of A
detmodp = rem(det(A),p); % Determinant mod p
rankp = gfrank(A,p);
disp(['Determinant = ',num2str(det_a)])
disp(['Determinant mod p is ',num2str(detmodp)])
disp(['Rank over GF(p) is ',num2str(rankp)])

The output is below.

Determinant = 3
Determinant mod p is 0
Rank over GF(p) is 2
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Purpose Convert one binary polynomial representation to another

Syntax polystandard = gfrepcov(poly2)

Description Two logical ways to represent polynomials over GF(2) are listed below.

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

A_ A_1 A_2 A_(m-1)0 2 1+ + + + −x x xm�

Each entry A_k is either one or zero.

2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

x x x xA_0 A_1 A_2 A_(m-1)+ + + +�

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this
toolbox, but there are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to
the first, for polynomials of degree at least 2. poly2 and polystandard
are row vectors. The entries of poly2 are distinct integers, and at least
one entry must exceed 1. Each entry of polystandard is either 0 or 1.

Note If poly2 is a binary row vector, gfrepcov assumes that it is
already in Format 1 above and returns it unaltered.

Examples The command below converts the representation format of the
polynomial 1 + x2 + x5.

polystandard = gfrepcov([0 2 5])
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polystandard =

1 0 1 0 0 1

See Also gfpretty, “Galois Fields of Odd Characteristic” on page 1-13
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Purpose Find roots of polynomial over prime Galois field

Syntax rt = gfroots(f,m,p)
rt = gfroots(f,prim_poly,p)
[rt,rt_tuple] = gfroots(...)
[rt,rt_tuple,field] = gfroots(...)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), use the roots function with Galois arrays.
For details, see “Roots of Polynomials”.

For all syntaxes, f is a row vector that gives the coefficients, in order of
ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of
roots.

rt = gfroots(f,m,p) finds roots in GF(p^m) of the polynomial that
f represents. rt is a column vector each of whose entries is the
exponential format of a root. The exponential format is relative to a root
of the default primitive polynomial for GF(p^m).

rt = gfroots(f,prim_poly,p) finds roots in GF(pm) of the polynomial
that f represents. rt is a column vector each of whose entries is the
exponential format of a root. The exponential format is relative to a
root of the degree-m primitive polynomial for GF(pm) that prim_poly
represents.

[rt,rt_tuple] = gfroots(...) returns an additional matrix
rt_tuple, whose kth row is the polynomial format of the root rt(k).
The polynomial and exponential formats are both relative to the same
primitive element.
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[rt,rt_tuple,field] = gfroots(...) returns additional matrices
rt_tuple and field. rt_tuple is described in the preceding paragraph.
field gives the list of elements of the extension field. The list of
elements, the polynomial format, and the exponential format are all
relative to the same primitive element.

Note For a description of the various formats that gfroots uses, see
“Representing Elements of Galois Fields”.

Examples “Roots of Polynomials” contains a description and example of the use
of gfroots.

The code below finds the polynomial format of the roots of the primitive
polynomial 2 + x3 + x4 for GF(81). It then displays the roots in
traditional form as polynomials in alph. (The output is omitted here.)
Because prim_poly is both the primitive polynomial and the polynomial
whose roots are sought, alph itself is a root.

p = 3; m = 4;
prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)
f = prim_poly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,prim_poly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)

gfpretty(rt_tuple(ii,:),'alpha')
end

See Also gfprimdf, “Galois Fields of Odd Characteristic” on page 1-13
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Purpose Subtract polynomials over Galois field

Syntax c = gfsub(a,b,p)
c = gfsub(a,b,p,len)
c = gfsub(a,b,field)

Description
Note This function performs computations in GF(pm), where p is
prime. To work in GF(2m), apply the - operator to Galois arrays of equal
size. For details, see “Example: Addition and Subtraction”.

c = gfsub(a,b,p) calculates a minus b, where a and b represent
polynomials over GF(p) and p is a prime number. a, b, and c are row
vectors that give the coefficients of the corresponding polynomials in
order of ascending powers. Each coefficient is between 0 and p-1. If
a and b are matrices of the same size, the function treats each row
independently.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above,
except that it returns a row vector of length len. The output c is a
truncated or extended representation of the answer. If the row vector
corresponding to the answer has fewer than len entries (including
zeros), extra zeros are added at the end; if it has more than len entries,
entries from the end are removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are
the exponential format of two elements of GF(pm), relative to some
primitive element of GF(pm). p is a prime number and m is a positive
integer. field is the matrix listing all elements of GF(pm), arranged
relative to the same primitive element. c is the exponential format of
the answer, relative to the same primitive element. See “Representing
Elements of Galois Fields” for an explanation of these formats. If a
and b are matrices of the same size, the function treats each element
independently.

2-294



gfsub

Examples In the code below, differ is the difference of 2 + 3x + x2 and 4 + 2x + 3x2
over GF(5), and linpart is the degree-one part of differ.

differ = gfsub([2 3 1],[4 2 3],5)
linpart = gfsub([2 3 1],[4 2 3],5,2)

The output is

differ =

3 1 3

linpart =

3 1

The code below shows that A2 - A4 = A7, where A is a root of the primitive
polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
d = gfsub(2,4,field)

The output is

d =

7

See Also gfadd, gfconv, gfmul, gfdeconv, gfdiv, gftuple, “Galois Fields of
Odd Characteristic” on page 1-13
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Purpose Generate file to accelerate Galois field computations

Syntax gftable(m,prim_poly);

Description gftable(m,prim_poly) generates a file that can help accelerate
computations in the field GF(2^m) as described by the nondefault
primitive polynomial prim_poly. The integer m is between 1 and 16.
The integer prim_poly represents a primitive polynomial for GF(2^m)
using the format described in “Specifying the Primitive Polynomial”.
The function places the file, called userGftable.mat, in your current
working directory. If necessary, the function overwrites any writable
existing version of the file.

Note If prim_poly is the default primitive polynomial for GF(2^m)
listed in the table on the gf reference page, this function has no effect.
A MAT-file in your MATLAB installation already includes information
that facilitates computations with respect to the default primitive
polynomial.

Examples In the example below, you expect t3 to be similar to t1 and to be
significantly smaller than t2, assuming that you do not already have a
userGftable.mat file that includes the (m, prim_poly) pair (8, 501).

% Sample code to check how much gftable improves speed.
tic; a = gf(repmat([0:2^8-1],1000,1),8); b = a.^100; t1 = toc;
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t2 = toc;
gftable(8,501); % Include this primitive polynomial in the file.
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t3 = toc;

See Also gf, “Speed and Nondefault Primitive Polynomials”
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Purpose Minimize length of polynomial representation

Syntax c = gftrunc(a)

Description c = gftrunc(a) truncates a row vector, a, that gives the coefficients of
a GF(p) polynomial in order of ascending powers. If a(k) = 0 whenever
k > d + 1, the polynomial has degree d. The row vector c omits these
high-order zeros and thus has length d + 1.

Examples In the code below, zeros are removed from the end, but not from
the beginning or middle, of the row-vector representation of
x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])
c =

0 0 1 2 3 0 0 4 5

See Also gfadd, gfsub, gfconv, gfdeconv, gftuple, “Galois Fields of Odd
Characteristic” on page 1-13
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Purpose Simplify or convert Galois field element formatting

Syntax tp = gftuple(a,m)
tp = gftuple(a,prim_poly)
tp = gftuple(a,m,p)
tp = gftuple(a,prim_poly,p)
tp = gftuple(a,prim_poly,p,prim_ck)
[tp,expform] = gftuple(...)

Description
Note This function performs computations in GF(pm), where p is prime.
To perform equivalent computations in GF(2m), apply the .^ operator
and the log function to Galois arrays. For more information, see
“Example: Exponentiation” and “Example: Elementwise Logarithm”.

For All Syntaxes

gftuple serves to simplify the polynomial or exponential format of
Galois field elements, or to convert from one format to another. For
an explanation of the formats that gftuple uses, see “Representing
Elements of Galois Fields”.

In this discussion, the format of an element of GF(pm) is called
“simplest” if all exponents of the primitive element are

• Between 0 and m-1 for the polynomial format

• Either -Inf, or between 0 and pm-2, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element
of a Galois field. The format of a determines how MATLAB interprets it:

• If a is a column of integers, MATLAB interprets each row as an
exponential format of an element. Negative integers are equivalent
to -Inf in that they all represent the zero element of the field.
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• If a has more than one column, MATLAB interprets each row as a
polynomial format of an element. (Each entry of a must be an integer
between 0 and p-1.)

The exponential or polynomial formats mentioned above are all relative
to a primitive element specified by the second input argument. The
second argument is described below.

For Specific Syntaxes

tp = gftuple(a,m) returns the simplest polynomial format of the
elements that a represents, where the kth row of tp corresponds to the
kth row of a. The formats are relative to a root of the default primitive
polynomial for GF(2^m), where m is a positive integer.

tp = gftuple(a,prim_poly) is the same as the syntax above, except
that prim_poly is a row vector that lists the coefficients of a degree m
primitive polynomial for GF(2^m) in order of ascending exponents.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2
is replaced by a prime number p.

tp = gftuple(a,prim_poly,p) is the same as tp =
gftuple(a,prim_poly) except that 2 is replaced by a prime number p.

tp = gftuple(a,prim_poly,p,prim_ck) is the same as tp =
gftuple(a,prim_poly,p) except that gftuple checks whether
prim_poly represents a polynomial that is indeed primitive. If not, then
gftuple generates an error and tp is not returned. The input argument
prim_ck can be any number or string; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix
expform. The kth row of expform is the simplest exponential format
of the element that the kth row of a represents. All other features are
as described in earlier parts of this “Description” section, depending
on the input arguments.

Examples Some examples are in these subsections of “Galois Fields of Odd
Characteristic” on page 1-13
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• “List of All Elements of a Galois Field” (end of section)

• “Converting to Simplest Polynomial Format”

• “Converting to Simplest Polynomial Format”

As another example, the gftuple command below generates a list of
elements of GF(p^m), arranged relative to a root of the default primitive
polynomial. Some functions in this toolbox use such a list as an input
argument.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of
the input matrix. In the first command, a column vector is treated as a
sequence of elements expressed in exponential format. In the second
command, a row vector is treated as a single element expressed in
polynomial format.

tp1 = gftuple([0; 1],3,3)
tp2 = gftuple([0, 0, 0, 1],3,3)

The output is below.

tp1 =

1 0 0
0 1 0

tp2 =

2 1 0

The outputs reflect that, according to the default primitive polynomial
for GF(33), the relations below are true.
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α α α

α α α

α α α α α

0 2

1 2

2 3 2

1 0 0

0 1 0

0 0 0 2 0

= + +

= + +

+ + + = + +

Algorithm gftuple uses recursive callbacks to determine the exponential format.

See Also gfadd, gfmul, gfconv, gfdiv, gfdeconv, gfprimdf, “Galois Fields of
Odd Characteristic” on page 1-13
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Purpose Calculate minimum distance of linear block code

Syntax wt = gfweight(genmat)
wt = gfweight(genmat,'gen')
wt = gfweight(parmat,'par')
wt = gfweight(genpoly,n)

Description The minimum distance, or minimum weight, of a linear block code
is defined as the smallest positive number of nonzero entries in any
n-tuple that is a codeword.

wt = gfweight(genmat) returns the minimum distance of the linear
block code whose generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the
linear block code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the
linear block code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the
cyclic code whose codeword length is n and whose generator polynomial
is represented by genpoly. genpoly is a row vector that gives the
coefficients of the generator polynomial in order of ascending powers.

Examples The commands below illustrate three different ways to compute the
minimum distance of a (7,4) cyclic code.

n = 7;
% Generator polynomial of (7,4) cyclic code
genpoly = cyclpoly(n,4);
[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...

gfweight(genpoly,n)]

The output is
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wts =

3 3 3

See Also hammgen, cyclpoly, bchgenpoly, “Block Coding”
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Purpose Convert Gray-encoded positive integers to corresponding Gray-decoded
integers

Syntax y = gray2bin(x,modulation,M)
[y,map] = gray2bin(x,modulation,M)

Description y = gray2bin(x,modulation,M) generates a Gray-decoded output
vector or matrix y with the same dimensions as its input parameter x. x
can be a scalar, vector, or matrix. modulation is the modulation type
and must be a string equal to 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M
is the modulation order that can be an integer power of 2.

[y,map] = gray2bin(x,modulation,M) generates a Gray-decoded
output y with its respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map
output gives the Gray encoded labels for the corresponding modulation.
See the example below.

Note If you are converting binary coded data to Gray-coded data
and modulating the result immediately afterwards, you should use
the appropriate modulation object or function with the'Gray' option,
instead of BIN2GRAY.

Examples % To Gray decode a vector x with a 16-QAM Gray encoded
% constellation and return its map, use:
x=randint(1,100,16);
[y,map] = gray2bin(x,'qam',16);
% Obtain the symbols for 16-QAM
hMod = modem.qammod('M', 16);
symbols = hMod.Constellation;
% Plot the constellation
scatterplot(symbols);
set(get(gca,'Children'),'Marker','d','MarkerFaceColor','auto');
hold on;
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% Label the constellation points according
% to the Gray mapping
for jj=1:16
text(real(symbols(jj))-0.15,imag(symbols(jj))+0.15,...
dec2base(map(jj),2,4));

end
set(gca,'yTick',(-4:2:4),'xTick',(-4:2:4),...
'XLim',[-4 4],'YLim',...
[-4 4],'Box','on','YGrid','on', 'XGrid','on');

The example code generates the following plot, which shows the 16
QAM constellation with Gray-encoded labeling.

See Also bin2gray
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Purpose Produce parity-check and generator matrices for Hamming code

Syntax h = hammgen(m)
h = hammgen(m,pol)
[h,g] = hammgen(...)
[h,g,n,k] = hammgen(...)

Description For all syntaxes, the codeword length is n. n has the form 2m-1 for some
positive integer m greater than or equal to 3. The message length, k,
has the form n-m.

h = hammgen(m) produces an m-by-n parity-check matrix for a Hamming
code having codeword length n = 2^m-1. The input m is a positive
integer greater than or equal to 3. The message length of the code is
n-m. The binary primitive polynomial used to produce the Hamming
code is the default primitive polynomial for GF(2^m), represented by
gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a
Hamming code having codeword length n = 2^m-1. The input m is a
positive integer greater than or equal to 3. The message length of the
code is n-m. pol is a row vector that gives the coefficients, in order of
ascending powers, of the binary primitive polynomial for GF(2^m) that
is used to produce the Hamming code. hammgen produces an error if pol
represents a polynomial that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that
it also produces the k-by-n generator matrix g that corresponds to the
parity-check matrix h. k, the message length, equals n-m, or 2^m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...)
except that it also returns the codeword length n and the message
length k.

Note If your value of m is less than 25 and if your primitive polynomial
is the default primitive polynomial for GF(2^m), the syntax hammgen(m)
is likely to be faster than the syntax hammgen(m,pol).
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Examples The command below exhibits the parity-check and generator matrices
for a Hamming code with codeword length 7 = 23-1 and message length
4 = 7-3.

[h,g,n,k] = hammgen(3)

h =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

g =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

n =

7

k =

4

The command below, which uses 1 + x2 + x3 as the primitive polynomial
for GF(23), shows that the parity-check matrix depends on the choice
of primitive polynomial. Notice that h1 below is different from h in
the example above.

h1 = hammgen(3,[1 0 1 1])
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h1 =

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

Algorithm Unlike gftuple, which processes one m-tuple at a time, hammgen
generates the entire sequence from 0 to 2^m-1. The computation
algorithm uses all previously computed values to produce the
computation result.

See Also encode, decode, gen2par, “Block Coding”
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Purpose Convert Hankel matrix to linear system model

Syntax [num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description [num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a
linear system transfer function with numerator num and denominator
den. The vectors num and den list the coefficients of their respective
polynomials in ascending order of powers of z-1. The argument ini is
the system impulse at time zero. If tol > 1, tol is the order of the
conversion. If tol < 1, tol is the tolerance in selecting the conversion
order based on the singular values. If you omit tol, its default value is
0.01. This conversion uses the singular value decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists
the singular values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to
a corresponding linear system state-space model. a, b, c, and d are
matrices. The input parameters are the same as in the first syntax
above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax
above, except that sv is a vector that lists the singular values of h.

Examples h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

The output is

num =

0 1.0000 0.0000 1.0000

den =
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1.0000 0.0000 0.0000 0.0000

sv =

1.6180
1.0000
0.6180

See Also rcosflt, hankel
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Purpose Restore ordering of symbols permuted using helintrlv

Syntax [deintrlved,state] = heldeintrlv(data,col,ngrp,stp)
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,

init_state)
deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)

Description [deintrlved,state] = heldeintrlv(data,col,ngrp,stp) restores
the ordering of symbols in data by placing them in an array row by row
and then selecting groups in a helical fashion to place in the output,
deintrlved. data must have col*ngrp elements. If data is a matrix
with multiple rows and columns, it must have col*ngrp rows, and the
function processes the columns independently. state is a structure that
holds the final state of the array. state.value stores input symbols that
remain in the col columns of the array and do not appear in the output.

The function uses the array internally for its computations. The array
has unlimited rows indexed by 1, 2, 3,..., and col columns. The function
initializes the top of the array with zeros. It then places col*ngrp
symbols from the input into the next ngrp rows of the array. The
function places symbols from the array in the output, intrlved, placing
ngrp symbols at a time; the kth group of ngrp symbols comes from the
kth column of the array, starting from row 1+(k-1)*stp. Some output
symbols are default values of 0 rather than input symbols; similarly,
some input symbols are left in the array and do not appear in the output.

[deintrlved,state] =
heldeintrlv(data,col,ngrp,stp,init_state) initializes the array
with the symbols contained in init_state.value instead of zeros. The
structure init_state is typically the state output from a previous call
to this same function, and is unrelated to the corresponding
interleaver. In this syntax, some output symbols are default
values of 0, some are input symbols from data, and some are
initialization values from init_state.value.

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state) is
the same as the syntax above, except that it does not record the
deinterleaver’s final state. This syntax is appropriate for the last in a
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series of calls to this function. However, if you plan to call this function
again to continue the deinterleaving process, the syntax above is more
appropriate.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the helintrlv function, use
the same col, ngrp, and stp inputs in both functions. In that case,
the two functions are inverses in the sense that applying helintrlv
followed by heldeintrlv leaves data unchanged, after you take their
combined delay of col*ngrp*ceil(stp*(col-1)/ngrp) into account.
To learn more about delays of convolutional interleavers, see “Delays of
Convolutional Interleavers”.

Note Because the delay is an integer multiple of the number of
symbols in data, you must use heldeintrlv at least twice (possibly
more times, depending on the actual delay value) before the function
returns results that represent more than just the delay.

Examples The example below illustrates how to recover interleaved data, taking
into account the delay of the interleaver-deinterleaver pair.

col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters
% Compute the delay of interleaver-deinterleaver pair.
delayval = col * ngrp * ceil(stp * (col-1)/ngrp);

len = col*ngrp; % Process this many symbols at one time.
data = randint(len,1,10); % Random symbols
data_padded = [data; zeros(delayval,1)]; % Pad with zeros.

% Interleave zero-padded data.
[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);
[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp, ...

stp,istate);
i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);
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% Deinterleave.
[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);
[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);
d3 = heldeintrlv(i3,col,ngrp,stp,dstate);

% Check the results.
d0 = [d1; d2; d3]; % All the deinterleaved data
d0_trunc = d0(delayval+1:end); % Remove the delay.
ser = symerr(data,d0_trunc)

The output below shows that no symbol errors occurred.

ser =

0

See Also helintrlv, “Interleaving”
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Purpose Permute symbols using helical array

Syntax intrlved = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)

Description intrlved = helintrlv(data,col,ngrp,stp) permutes the symbols
in data by placing them in an unlimited-row array in helical fashion
and then placing rows of the array in the output, intrlved. data must
have col*ngrp elements. If data is a matrix with multiple rows and
columns, it must have col*ngrp rows, and the function processes the
columns independently.

The function uses the array internally for its computations. The array
has unlimited rows indexed by 1, 2, 3,..., and col columns. The function
partitions col*ngrp symbols from the input into consecutive groups of
ngrp symbols. The function places the kth group in the array along
column k, starting from row 1+(k-1)*stp. Positions in the array that do
not contain input symbols have default values of 0. The function places
col*ngrp symbols from the array in the output, intrlved, by reading
the first ngrp rows sequentially. Some output symbols are default
values of 0 rather than input symbols; similarly, some input symbols
are left in the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp) returns a
structure that holds the final state of the array. state.value stores
input symbols that remain in the col columns of the array and do not
appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)
initializes the array with the symbols contained in init_state.value.
The structure init_state is typically the state output from a previous
call to this same function, and is unrelated to the corresponding
deinterleaver. In this syntax, some output symbols are default values
of 0, some are input symbols from data, and some are initialization
values from init_state.value.
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Examples The example below rearranges the integers from 1 to 24.

% Interleave some symbols. Record final state of array.
[i1,state] = helintrlv([1:12]',3,4,1);
% Interleave more symbols, remembering the symbols that
% were left in the array from the earlier command.
i2 = helintrlv([13:24]',3,4,1,state);

disp('Interleaved data:')
disp([i1,i2]')
disp('Values left in array after first interleaving operation:')
state.value{:}

During the successive calls to helintrlv, it internally creates the
three-column arrays

[1 0 0;
2 5 0;
3 6 9;
4 7 10;
0 8 11;
0 0 12]

and

[13 8 11;
14 17 12;
15 18 21;
16 19 22;
0 20 23;
0 0 24]

In the second array shown above, the 8, 11, and 12 are values left in the
array from the previous call to the function. Specifying the init_state
input in the second call to the function causes it to use those values
rather than the default values of 0.
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The output from this example is below. (The actual interleaved data is
a tall matrix, but it has been transposed into a wide matrix for display
purposes.) The interleaved data comes from the top four rows of the
three-column arrays shown above. Notice that some of the symbols in
the first half of the interleaved data are default values of 0, some of the
symbols in the second half of the interleaved data were left in the array
from the first call to helintrlv, and some of the input symbols (20, 23,
and 24) do not appear in the interleaved data at all.

Interleaved data:
Columns 1 through 10

1 0 0 2 5 0 3 6 9 4
13 8 11 14 17 12 15 18 21 16

Columns 11 through 12

7 10
19 22

Values left in array after first interleaving operation:

ans =

[]

ans =

8

ans =

11 12
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The example on the reference page for heldeintrlv also uses this
function.

See Also heldeintrlv, “Interleaving”
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Purpose Restore ordering of symbols in helical pattern

Syntax deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)

Description deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)
rearranges the elements in data by filling a temporary matrix with the
elements in a helical fashion and then sending the matrix contents to
the output row by row. Nrows and Ncols are the dimensions of the
temporary matrix. hstep is the slope of the diagonal, that is, the
amount by which the row index increases as the column index increases
by one. hstep must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along
diagonals of the temporary matrix. The number of elements in each
diagonal is exactly Ncols, after the function wraps past the edges of the
matrix when necessary. The function traverses diagonals so that the
row index and column index both increase. Each diagonal after the first
one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a
matrix with multiple rows and columns, data must have Nrows*Ncols
rows and the function processes the columns independently.

To use this function as an inverse of the helscanintrlv function,
use the same Nrows, Ncols, and hstep inputs in both functions. In
that case, the two functions are inverses in the sense that applying
helscanintrlv followed by helscandeintrlv leaves data unchanged.

Examples The command below rearranges a vector using a 3-by-4 temporary
matrix and diagonals of slope 1.

d = helscandeintrlv(1:12,3,4,1)
d =

Columns 1 through 10

1 10 7 4 5 2 11 8 9 6
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Columns 11 through 12

3 12

Internally, the function creates the 3-by-4 temporary matrix

[1 10 7 4;
5 2 11 8;
9 6 3 12]

using length-four diagonals. The function then sends the elements,
row by row, to the output d.

See Also helscanintrlv, “Interleaving”
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Purpose Reorder symbols in helical pattern

Syntax intrlvd = helscanintrlv(data,Nrows,Ncols,hstep)

Description intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) rearranges the
elements in data by filling a temporary matrix with the elements row
by row and then sending the matrix contents to the output in a helical
fashion. Nrows and Ncols are the dimensions of the temporary matrix.
hstep is the slope of the diagonal, that is, the amount by which the row
index increases as the column index increases by one. hstep must be a
nonnegative integer less than Nrows.

Helical fashion means that the function selects elements along
diagonals of the temporary matrix. The number of elements in each
diagonal is exactly Ncols, after the function wraps past the edges of the
matrix when necessary. The function traverses diagonals so that the
row index and column index both increase. Each diagonal after the first
one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a
matrix with multiple rows and columns, data must have Nrows*Ncols
rows and the function processes the columns independently.

Examples The command below rearranges a vector using diagonals of two
different slopes.

i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.
i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.

The output is below.

i1 =

Columns 1 through 10

1 6 11 4 5 10 3 8 9 2

Columns 11 through 12
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7 12

i2 =

Columns 1 through 10

1 10 7 4 5 2 11 8 9 6

Columns 11 through 12

3 12

In each case, the function internally creates the temporary 3-by-4
matrix

[1 2 3 4;
5 6 7 8;
9 10 11 12]

To form i1, the function forms each slope-one diagonal by moving one
row down and one column to the right. The first diagonal contains 1,
6, 11, and 4, while the second diagonal starts with 5 because that is
beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two
rows down and one column to the right. The first diagonal contains 1,
10, 7, and 4, while the second diagonal starts with 5 because that is
beneath 1 in the temporary matrix.

See Also helscandeintrlv, “Interleaving”

2-321



hilbiir

Purpose Design Hilbert transform IIR filter

Syntax hilbiir
hilbiir(ts)
hilbiir(ts,dly)
hilbiir(ts,dly,bandwidth)
hilbiir(ts,dly,bandwidth,tol)
[num,den] = hilbiir(...)
[num,den,sv] = hilbiir(...)
[a,b,c,d] = hilbiir(...)
[a,b,c,d,sv] = hilbiir(...)

Description The function hilbiir designs a Hilbert transform filter. The output
is either

• A plot of the filter’s impulse response, or

• A quantitative characterization of the filter, using either a transfer
function model or a state-space model

Background Information

An ideal Hilbert transform filter has the transfer function
H(s) = -jsgn(s), where sgn(.) is the signum function (sign in
MATLAB). The impulse response of the Hilbert transform filter is

h t
t

( ) = 1
π

Because the Hilbert transform filter is a noncausal filter, the hilbiir
function introduces a group delay, dly. A Hilbert transform filter with
this delay has the impulse response

h t
t

( )
( )

=
−
1

π dly
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Choosing a Group Delay Parameter

The filter design is an approximation. If you provide the filter’s group
delay as an input argument, these two suggestions can help improve
the accuracy of the results:

• Choose the sample time ts and the filter’s group delay dly so that
dly is at least a few times larger than ts and rem(dly,ts) = ts/2.
For example, you can set ts to 2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform
filter can be interpreted as 0, -Inf, or Inf. If hilbiir encounters
this point, it sets the impulse response there to zero. To improve
accuracy, avoid the point t = dly.

Syntaxes for Plots

Each of these syntaxes produces a plot of the impulse response of the
filter that the hilbiir function designs, as well as the impulse response
of a corresponding ideal Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert
transform filter with a one-second group delay. The sample time is
2/7 seconds. In this particular design, the tolerance index is 0.05. The
plot also displays the impulse response of the ideal Hilbert transform
filter with a one-second group delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert
transform filter with a sample time of ts seconds and a group delay of
ts*7/2 seconds. The tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a sample
time of ts seconds and a group delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the
filter’s group delay is dly for both the ideal filter and the filter that
hilbiir designs. See “Choosing a Group Delay Parameter” on page
2-323 above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except
that bandwidth specifies the assumed bandwidth of the input signal
and that the filter design might use a compensator for the input signal.

2-323



hilbiir

If bandwidth = 0 or bandwidth > 1/(2*ts), hilbiir does not use a
compensator.

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above,
except that tol is the tolerance index. If tol < 1, the order of the filter
is determined by

truncated-singular-value
maximum-singular-value

< tol

If tol > 1, the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities

Each of these syntaxes produces quantitative information about the
filter that hilbiir designs, but does not produce a plot. The input
arguments for these syntaxes (if you provide any) are the same as those
described in “Syntaxes for Plots” on page 2-323.

[num,den] = hilbiir(...) outputs the numerator and denominator
of the IIR filter’s transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and
denominator of the IIR filter’s transfer function, and the singular values
of the Hankel matrix that hilbiir uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space
model of the designed Hilbert transform filter. a, b, c, and d are
matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space
model of the designed Hilbert transform filter, and the singular values
of the Hankel matrix that hilbiir uses in the computation.

Algorithm The hilbiir function calculates the impulse response of the ideal
Hilbert transform filter response with a group delay. It fits the response
curve using a singular-value decomposition method. See the book by
Kailath [1].
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Examples For an example using the function’s default values, type one of the
following commands at the MATLAB prompt.

hilbiir
[num,den] = hilbiir

See Also grpdelay, rcosiir, “Special Filters”

References [1] Kailath, Thomas, Linear Systems, Englewood Cliffs, NJ,
Prentice-Hall, 1980.
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Purpose Huffman decoder

Syntax dsig = huffmandeco(comp,dict)

Description dsig = huffmandeco(comp,dict) decodes the numeric Huffman code
vector comp using the code dictionary dict. The argument dict is an
N-by-2 cell array, where N is the number of distinct possible symbols in
the original signal that was encoded as comp. The first column of dict
represents the distinct symbols and the second column represents the
corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict is allowed to be the prefix of any
other codeword in dict. You can generate dict using the huffmandict
function and comp using the huffmanenco function. If all signal values
in dict are numeric, dsig is a vector; if any signal value in dict is
alphabetical, dsig is a one-dimensional cell array.

Examples The example below encodes and then decodes a vector of random data
that has a prescribed probability distribution.

symbols = [1:6]; % Distinct symbols that data source can produce
p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution
[dict,avglen] = huffmandict(symbols,p); % Create dictionary.
actualsig = randsrc(1,100,[symbols; p]); % Create data using p.
comp = huffmanenco(actualsig,dict); % Encode the data.
dsig = huffmandeco(comp,dict); % Decode the Huffman code.
isequal(actualsig,dsig) % Check whether the decoding is correct.

The output below indicates that the decoder successfully recovered the
data in actualsig.

ans =

1

See Also huffmandict, huffmanenco, “Huffman Coding”
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References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.
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Purpose Generate Huffman code dictionary for source with known probability
model

Syntax [dict,avglen] = huffmandict(symbols,p)
[dict,avglen] = huffmandict(symbols,p,N)
[dict,avglen] = huffmandict(symbols,p,N,variance)

Description For All Syntaxes

The huffmandict function generates a Huffman code dictionary
corresponding to a source with a known probability model. The required
inputs are

• symbols, which lists the distinct signal values that the source
produces. It can have the form of a numeric vector, numeric cell
array, or alphanumeric cell array. If it is a cell array, it must be
either a row or a column.

• p, a probability vector whose kth element is the probability with
which the source produces the kth element of symbols. The length of
p must equal the length of symbols.

The outputs of huffmandict are

• dict, a two-column cell array in which the first column lists the
distinct signal values from symbols and the second column lists
the corresponding Huffman codewords. In the second column, each
Huffman codeword is represented as a numeric row vector.

• avglen, the average length among all codewords in the dictionary,
weighted according to the probabilities in the vector p.

For Specific Syntaxes

[dict,avglen] = huffmandict(symbols,p) generates a binary
Huffman code dictionary using the maximum variance algorithm.

[dict,avglen] = huffmandict(symbols,p,N) generates an N-ary
Huffman code dictionary using the maximum variance algorithm. N is
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an integer between 2 and 10 that must not exceed the number of source
symbols whose probabilities appear in the vector p.

[dict,avglen] = huffmandict(symbols,p,N,variance) generates
an N-ary Huffman code dictionary with the minimum variance if
variance is 'min' and the maximum variance if variance is 'max'.
N is an integer between 2 and 10 that must not exceed the length of
the vector p.

Examples symbols = [1:5];
p = [.3 .3 .2 .1 .1];
[dict,avglen] = huffmandict(symbols,p)
samplecode = dict{5,2} % Codeword for fifth signal value

The output is below, where the first column of dict lists the values in
symbols and the second column lists the corresponding codewords.

dict =

[1] [1x2 double]
[2] [1x2 double]
[3] [1x2 double]
[4] [1x3 double]
[5] [1x3 double]

avglen =

2.2000

samplecode =

1 1 0

See Also huffmanenco, huffmandeco, “Huffman Coding”
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References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.
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Purpose Huffman encoder

Syntax comp = huffmanenco(sig,dict)

Description comp = huffmanenco(sig,dict) encodes the signal sig using the
Huffman codes described by the code dictionary dict. The argument
sig can have the form of a numeric vector, numeric cell array, or
alphanumeric cell array. If sig is a cell array, it must be either a row or
a column. dict is an N-by-2 cell array, where N is the number of distinct
possible symbols to be encoded. The first column of dict represents the
distinct symbols and the second column represents the corresponding
codewords. Each codeword is represented as a numeric row vector, and
no codeword in dict can be the prefix of any other codeword in dict.
You can generate dict using the huffmandict function.

Examples The example below encodes a vector of random data that has a
prescribed probability distribution.

symbols = [1:6]; % Distinct symbols that data source can produce
p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution
[dict,avglen] = huffmandict(symbols,p); % Create dictionary.
actualsig = randsrc(100,1,[symbols; p]); % Create data using p.
comp = huffmanenco(actualsig,dict); % Encode the data.

See Also huffmandict, huffmandeco, “Huffman Coding”

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,
Morgan Kaufmann, 2000.
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Purpose Inverse discrete Fourier transform

Syntax ifft(x)

Description ifft(x) is the inverse discrete Fourier transform (DFT) of the Galois
vector x. If x is in the Galois field GF(2m), the length of x must be 2m-1.

Examples For an example using ifft, see the reference page for fft.

Limitations The Galois field over which this function works must have 256 or fewer
elements. In other words, x must be in the Galois field GF(2m), where
m is an integer between 1 and 8.

Algorithm If x is a column vector, ifft applies dftmtx to the multiplicative
inverse of the primitive element of the Galois field and multiplies the
resulting matrix by x.

See Also fft, dftmtx, “Signal Processing Operations in Galois Fields”
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Purpose Integrate and dump

Syntax y = intdump(x,nsamp)

Description y = intdump(x,nsamp) integrates the signal x over a symbol period
and outputs one value for that symbol period. A symbol period consists
of nsamp samples. If x contains multiple symbols, the function processes
the symbols independently. If x is a matrix with multiple rows, the
function treats each column as a channel and processes the columns
independently.

Examples An example in “Combining Pulse Shaping and Filtering with
Modulation” uses this function in conjunction with modulation.

The code below processes two independent channels, each containing
three symbols of data. Each symbol contains four samples.

nsamp = 4; % Number of samples per symbol
ch1 = randint(3*nsamp,1,2,68521); % Random binary channel
ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses
x = [ch1 ch2]; % Two-channel signal
y = intdump(x,nsamp)

The output is below. Each column corresponds to one channel, and
each row corresponds to one symbol.

y =

0.5000 1.0000
0.5000 2.0000
1.0000 3.0000

See Also rectpulse
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Purpose Reorder sequence of symbols

Syntax intrlvd = intrlv(data,elements)

Description intrlvd = intrlv(data,elements) rearranges the elements of data
without repeating or omitting any elements. If data is a length-N
vector or an N-row matrix, elements is a length-N vector that permutes
the integers from 1 to N. The sequence in elements is the sequence in
which elements from data or its columns appear in intrlvd. If data
is a matrix with multiple rows and columns, the function processes
the columns independently.

Examples The command below rearranges the elements of a vector. Your output
might differ because the permutation vector is random in this example.

p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p)

The output is below.

a =

10 90 60 30 50 80 100 20 70 40

The command below rearranges each of two columns of a matrix.

b = intrlv([.1 .2 .3 .4 .5; .2 .4 .6 .8 1]',[2 4 3 5 1])
b =

0.2000 0.4000
0.4000 0.8000
0.3000 0.6000
0.5000 1.0000
0.1000 0.2000

See Also deintrlv, “Interleaving”
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Purpose True for trellis corresponding to catastrophic convolutional code

Syntax iscatastrophic(s)

Description iscatastrophic(s) returns true if the trellis s corresponds to
a convolutional code that causes catastrophic error propagation.
Otherwise, it returns false.

See Also convenc, istrellis, poly2trellis, struct, “Convolutional Coding”
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Purpose True for primitive polynomial for Galois field

Syntax isprimitive(a)

Description isprimitive(a) returns 1 if the polynomial that a represents is
primitive for the Galois field GF(2m), and 0 otherwise. The input a can
represent the polynomial using one of these formats:

• A nonnegative integer less than 217. The binary representation of
this integer indicates the coefficients of the polynomial. In this case,
m is floor(log2(a)).

• A Galois row vector in GF(2), listing the coefficients of the polynomial
in order of descending powers. In this case, m is the order of the
polynomial represented by a.

Examples The example below finds all primitive polynomials for GF(8) and then
checks using isprimitive whether specific polynomials are primitive.

a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)

isp1 = isprimitive(13) % 13 represents a primitive polynomial.

isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.

The output is below. If you examine the vector a, notice that isp1 is
true because 13 is an element in a, while isp2 is false because 14 is
not an element in a.

isp1 =

1

isp2 =

0
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See Also primpoly, “Galois Field Computations”
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Purpose True for valid trellis structure

Syntax [isok,status] = istrellis(s)

Description [isok,status] = istrellis(s) checks if the input s is a valid trellis
structure. If the input is a valid trellis structure, isok is 1 and status
is an empty string. Otherwise, isok is 0 and status is a string that
indicates why s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as
in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the
encoder: 2k

numOutputSymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in
the encoder

nextStates numStates-by-2k
matrix

Next states for all
combinations of
current state and
current input

outputs numStates-by-2k
matrix

Outputs (in octal)
for all combinations
of current state and
current input
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In the nextStates matrix, each entry is an integer between 0 and
numStates-1. The element in the sth row and uth column denotes the
next state when the starting state is s-1 and the input bits have decimal
representation u-1. To convert the input bits to a decimal value, use
the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when
the current set of input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1,
the shift register that receives the first input stream in the encoder
provides the least significant bits in the state number, and the shift
register that receives the last input stream in the encoder provides the
most significant bits in the state number.

In the outputs matrix, the element in the sth row and uth column
denotes the encoder’s output when the starting state is s-1 and the
input bits have decimal representation u-1. To convert to decimal value,
use the first output bit as the MSB.

Examples These commands assemble the fields into a very simple trellis structure,
and then verify the validity of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

The output is below.

isok =

1

status =
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''

Another example of a trellis is in “Trellis Description of a Convolutional
Encoder”.

See Also poly2trellis, struct, convenc, vitdec, “Convolutional Coding”
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Purpose Construct linear equalizer object

Syntax eqobj = lineareq(nweights,alg)
eqobj = lineareq(nweights,alg,sigconst)
eqobj = lineareq(nweights,alg,sigconst,nsamp)

Description The lineareq function creates an equalizer object that you can use
with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Using Adaptive Equalizer
Functions and Objects”.

eqobj = lineareq(nweights,alg) constructs a symbol-spaced linear
equalizer object. The equalizer has nweights complex weights, which
are initially all zeros. alg describes the adaptive algorithm that the
equalizer uses; you should create alg using any of these functions:
lms, signlms, normlms, varlms, rls, or cma. The signal constellation
of the desired output is [-1 1], which corresponds to binary phase
shift keying (BPSK).

eqobj = lineareq(nweights,alg,sigconst) specifies the signal
constellation vector of the desired output.

eqobj = lineareq(nweights,alg,sigconst,nsamp) constructs a
fractionally spaced linear equalizer object. The equalizer has nweights
complex weights spaced at T/nsamp, where T is the symbol period and
nsamp is a positive integer. nsamp = 1 corresponds to a symbol-spaced
equalizer.

Properties

The table below describes the properties of the linear equalizer object.
To learn how to view or change the values of a linear equalizer object,
see “Accessing Properties of an Equalizer”.

Tip To initialize or reset the equalizer object eqobj, enter reset(eqobj).
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Property Description

EqType Fixed value, 'Linear
Equalizer'

AlgType Name of the adaptive algorithm
represented by alg

nWeights Number of weights
nSampPerSym Number of input samples per

symbol (equivalent to nsamp input
argument). This value relates
to both the equalizer structure
(see the use of K in “Fractionally
Spaced Equalizers”) and an
assumption about the signal to be
equalized.

RefTap (except for CMA
equalizers)

Reference tap index, between 1
and nWeights. Setting this to a
value greater than 1 effectively
delays the reference signal and
the output signal by RefTap-1
with respect to the equalizer’s
input signal.

SigConst Signal constellation, a vector
whose length is typically a power
of 2

Weights Vector of complex coefficients.
This is the set of wi values in
the schematic in “Symbol-Spaced
Equalizers”.

WeightInputs Vector of tap weight inputs. This
is the set of ui values in the
schematic in “Symbol-Spaced
Equalizers”.
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Property Description

ResetBeforeFiltering If 1, each call to equalize
resets the state of eqobj before
equalizing. If 0, the equalization
process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer
processed since the last reset.
When you create or reset eqobj,
this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the
adaptive algorithm function
that created alg: lms, signlms,
normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the
equalizer object by adjusting the values of the properties listed below.

Property Adjusted Value

Weights zeros(1,nWeights)

WeightInputs zeros(1,nWeights)

StepSize
(Variable-step-size LMS
equalizers)

InitStep*ones(1,nWeights)

InvCorrMatrix (RLS
equalizers)

InvCorrInit*eye(nWeights)

An example illustrating relationships among properties is in “Linked
Properties of an Equalizer Object”.
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Examples For examples that use this function, see “Equalizing Using a Training
Sequence”, “Example: Equalizing Multiple Times, Varying the Mode”,
and “Example: Adaptive Equalization Within a Loop”.

See Also lms, signlms, normlms, varlms, rls, cma, dfe, equalize, “Equalizers”
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Purpose Optimize quantization parameters using Lloyd algorithm

Syntax [partition,codebook] = lloyds(training_set,initcodebook)
[partition,codebook] = lloyds(training_set,len)
[partition,codebook] = lloyds(training_set,...,tol)
[partition,codebook,distor] = lloyds(...)
[partition,codebook,distor,reldistor] = lloyds(...)

Description [partition,codebook] = lloyds(training_set,initcodebook)
optimizes the scalar quantization parameters partition and codebook
for the training data in the vector training_set. initcodebook, a
vector of length at least 2, is the initial guess of the codebook values.
The output codebook is a vector of the same length as initcodebook.
The output partition is a vector whose length is one less than the
length of codebook.

See “Representing Partitions”, “Representing Codebooks”, or the
reference page for quantiz in this chapter, for a description of the
formats of partition and codebook.

Note lloyds optimizes for the data in training_set. For best results,
training_set should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(training_set,len) is the same
as the first syntax, except that the scalar argument len indicates the
size of the vector codebook. This syntax does not include an initial
codebook guess.

[partition,codebook] = lloyds(training_set,...,tol) is the
same as the two syntaxes above, except that tol replaces 10-7 in
condition 1 of the algorithm description below.

[partition,codebook,distor] = lloyds(...) returns the final
mean square distortion in the variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns
a value reldistor that is related to the algorithm’s termination. In

2-345



lloyds

condition 1 of the algorithm below, reldistor is the relative change in
distortion between the last two iterations. In condition 2, reldistor is
the same as distor.

Examples The code below optimizes the quantization parameters for a sinusoidal
transmission via a three-bit channel. Because the typical data is
sinusoidal, training_set is a sampled sine wave. Because the channel
can transmit three bits at a time, lloyds prepares a codebook of length
23.

% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]*pi/500);
[partition,codebook] = lloyds(x,2^3)

The output is below.

partition =

Columns 1 through 6

-0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023

Column 7

0.8572

codebook =

Columns 1 through 6

-0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575

Columns 7 through 8

0.7372 0.9515
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Algorithm lloyds uses an iterative process to try to minimize the mean square
distortion. The optimization processing ends when either

• The relative change in distortion between iterations is less than 10-7.

• The distortion is less than eps*max(training_set), where eps is
the MATLAB floating-point relative accuracy.

See Also quantiz, dpcmopt, “Source Coding”

References [1] Lloyd, S.P., “Least Squares Quantization in PCM,” IEEE
Transactions on Information Theory, Vol. IT-28, March, 1982, pp.
129–137.

[2] Max, J., “Quantizing for Minimum Distortion,” IRE Transactions on
Information Theory, Vol. IT-6, March, 1960, pp. 7–12.
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Purpose Construct least mean square (LMS) adaptive algorithm object

Syntax alg = lms(stepsize)
alg = lms(stepsize,leakagefactor)

Description The lms function creates an adaptive algorithm object that you can use
with the lineareq function or dfe function to create an equalizer object.
You can then use the equalizer object with the equalize function to
equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

alg = lms(stepsize) constructs an adaptive algorithm object based
on the least mean square (LMS) algorithm with a step size of stepsize.

alg = lms(stepsize,leakagefactor) sets the leakage factor of the
LMS algorithm. leakagefactor must be between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Properties

The table below describes the properties of the LMS adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'LMS'
StepSize LMS step size parameter, a

nonnegative real number
LeakageFactor LMS leakage factor, a real

number between 0 and 1

Examples For examples that use this function, see “Equalizing Using a Training
Sequence”, “Example: Equalizing Multiple Times, Varying the Mode”,
and “Example: Adaptive Equalization Within a Loop”.
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Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all weights wi and define
u as the vector of all inputs ui. Based on the current set of weights, w,
this adaptive algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

See Also signlms, normlms, varlms, rls, cma, lineareq, dfe, equalize,
“Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, John Wiley & Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, NJ, Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, John Wiley & Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.
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Purpose Logarithm in Galois field

Syntax y = log(x)

Description y = log(x) computes the logarithm of each element in the Galois array
x. y is an integer array that solves the equation A.^y = x, where A is
the primitive element used to represent elements in x. More explicitly,
the base A of the logarithm is gf(2,x.m) or gf(2,x.m,x.prim_poly).
All elements in x must be nonzero because the logarithm of zero is
undefined.

Examples The code below illustrates how the logarithm operation inverts
exponentiation.

m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);
y = log(x);
primel = gf(2,m); % Primitive element in the field
z = primel .^ y; % This is now the same as x.
ck = isequal(x,z)

The output is

ck =

1

The code below shows that the logarithm of 1 is 0 and that the logarithm
of the base (primel) is 1.

m = 4; primel = gf(2,m);
yy = log([1, primel])

The output is

yy =

0 1
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Purpose Generalized Marcum Q function

Syntax Q = marcumq(a,b)
Q = marcumq(a,b,m)

Description Q = marcumq(a,b) computes the Marcum Q function of a and b, defined
by

Q a b x
x a

I ax dx
b

( , ) exp ( )= − +⎛

⎝
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∞
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where a and b are nonnegative real numbers. In this expression, I0 is
the modified Bessel function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by
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where a and b are nonnegative real numbers, and m is a positive integer.
In this expression, Im-1 is the modified Bessel function of the first kind of
order m-1.

If any of the inputs is a scalar, it is expanded to the size of the other
inputs.

See Also besseli

References [1] Cantrell, P. E., and A. K. Ojha, “Comparison of Generalized
Q-Function Algorithms,” IEEE Transactions on Information Theory,
Vol. IT-33, July, 1987, pp. 591–596.

[2] Marcum, J. I., “A Statistical Theory of Target Detection by Pulsed
Radar: Mathematical Appendix,” RAND Corporation, Santa Monica,
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CA, Research Memorandum RM-753, July 1, 1948. Reprinted in IRE
Transactions on Information Theory, Vol. IT-6, April, 1960, pp. 59–267.

[3] Shnidman, D. A., “The Calculation of the Probability of Detection
and the Generalized Marcum Q-Function,” IEEE Transactions on
Information Theory, Vol. IT-35, March, 1989, pp. 389–400.
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Purpose Convert mask vector to shift for shift register configuration

Syntax shift = mask2shift(prpoly,mask)

Description shift = mask2shift(prpoly,mask) returns the shift that is equivalent
to a mask, for a linear feedback shift register whose connections are
specified by the primitive polynomial prpoly. The prpoly input can
have one of these formats:

• A binary vector that lists the coefficients of the primitive polynomial
in order of descending powers

• An integer scalar whose binary representation gives the coefficients
of the primitive polynomial, where the least significant bit is the
constant term

The mask input is a binary vector whose length is the degree of the
primitive polynomial.

Note To save time, mask2shift does not check that prpoly is
primitive. If it is not primitive, the output is not meaningful. To find
primitive polynomials, use primpoly or see [2].

For more information about how masks and shifts are related to
pseudonoise sequence generators, see shift2mask.

Definition of Equivalent Shift

If A is a root of the primitive polynomial and m(A) is the mask
polynomial evaluated at A, the equivalent shift s solves the equation As
= m(A). To interpret the vector mask as a polynomial, treat mask as a
list of coefficients in order of descending powers.

Examples The first command below converts a mask of x3 + 1 into an equivalent
shift for the linear feedback shift register whose connections are
specified by the primitive polynomial x4 + x3 + 1. The second command
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shows that a mask of 1 is equivalent to a shift of 0. In both cases,
notice that the length of the mask vector is one less than the length of
the prpoly vector.

s = mask2shift([1 1 0 0 1],[1 0 0 1])
s2 = mask2shift([1 1 0 0 1],[0 0 0 1])

The output is below.

s =

4

s2 =

0

See Also shift2mask, log, isprimitive, primpoly

References [1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook,
Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum
Communications Handbook, New York, McGraw-Hill, 1994.
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Purpose Restore ordering of symbols by filling matrix by columns and emptying
it by rows

Syntax deintrlvd = matdeintrlv(data,Nrows,Ncols)

Description deintrlvd = matdeintrlv(data,Nrows,Ncols) rearranges the
elements in data by filling a temporary matrix with the elements column
by column and then sending the matrix contents, row by row, to the
output. Nrows and Ncols are the dimensions of the temporary matrix.
If data is a vector, it must have Nrows*Ncols elements. If data is a
matrix with multiple rows and columns, data must have Nrows*Ncols
rows and the function processes the columns independently.

To use this function as an inverse of the matintrlv function, use the
same Nrows and Ncols inputs in both functions. In that case, the two
functions are inverses in the sense that applying matintrlv followed by
matdeintrlv leaves data unchanged.

Examples The code below illustrates the inverse relationship between matintrlv
and matdeintrlv.

Nrows = 2; Ncols = 3;
data = [1 2 3 4 5 6; 2 4 6 8 10 12]';
a = matintrlv(data,Nrows,Ncols); % Interleave.
b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.

The output below shows that b is the same as data.

b =

1 2
2 4
3 6
4 8
5 10
6 12
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See Also matintrlv, “Interleaving”
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Purpose Reorder symbols by filling matrix by rows and emptying it by columns

Syntax intrlvd = matintrlv(data,Nrows,Ncols)

Description intrlvd = matintrlv(data,Nrows,Ncols) rearranges the elements in
data by filling a temporary matrix with the elements row by row and
then sending the matrix contents, column by column, to the output.
Nrows and Ncols are the dimensions of the temporary matrix. If data is
a vector, it must have Nrows*Ncols elements. If data is a matrix with
multiple rows and columns, data must have Nrows*Ncols rows and the
function processes the columns independently.

Examples The command below rearranges each of two columns of a matrix.

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',2,3)
b =

1 2
4 8
2 4
5 10
3 6
6 12

To form the first column of the output, the function creates the
temporary 2-by-3 matrix [1 2 3; 4 5 6]. Then the function reads
down each column of the temporary matrix to get [1 4 2 5 3 6].

See Also matdeintrlv, “Interleaving”

2-357



minpol

Purpose Find minimal polynomial of Galois field element

Syntax pl = minpol(x)

Description pl = minpol(x) finds the minimal polynomial of each element in the
Galois column vector, x. The output pl is an array in GF(2). The kth
row of pl lists the coefficients, in order of descending powers, of the
minimal polynomial of the kth element of x.

Note The output is in GF(2) even if the input is in a different Galois
field.

Examples The code below uses m = 4 and finds that the minimal polynomial of
gf(2,m) is just the primitive polynomial used for the field GF(2^m).
This is true for any value of m, not just the value used in the example.

m = 4;
A = gf(2,m)
pl = minpol(A)

The output is below. Notice that the row vector [1 0 0 1 1] represents
the polynomial D^4 + D + 1.

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

2

pl = GF(2) array.

Array elements =

1 0 0 1 1
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Another example is in “Minimal Polynomials”.

See Also cosets, “Polynomials over Galois Fields”
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Purpose Matrix left division \ of Galois arrays

Syntax x = A\B

Description x = A\B divides the Galois array A into B to produce a particular
solution of the linear equation A*x = B. In the special case when A is
a nonsingular square matrix, x is the unique solution, inv(A)*B, to
the equation.

Examples The code below shows that A \ eye(size(A)) is the inverse of the
nonsingular square matrix A.

m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);
Id = gf(eye(size(A)),m);
X = A \ Id;
ck1 = isequal(X*A, Id)
ck2 = isequal(A*X, Id)

The output is below.

ck1 =

1

ck2 =

1

Other examples are in “Solving Linear Equations”.

Limitations The matrix A must be one of these types:

• A nonsingular square matrix

• A tall matrix such that A'*A is nonsingular

• A wide matrix such that A*A' is nonsingular

2-360



mldivide

Algorithm If A is an M-by-N tall matrix where M > N, A \ B is the same as
(A'*A) \ (A'*B).

If A is an M-by-N wide matrix where M < N, A \ B is the same as
A' * ((A*A') \ B). This solution is not unique.

See Also “Linear Algebra in Galois Fields”
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Purpose Equalize linearly modulated signal using Viterbi algorithm

Syntax y = mlseeq(x,chcffs,const,tblen,opmode)
y = mlseeq(x,chcffs,const,tblen,opmode,nsamp)
y = mlseeq(...,'rst',nsamp,preamble,postamble)
y = mlseeq(...,'cont',nsamp,...
init_metric,init_states,init_inputs)
[y,final_metric,final_states,final_inputs] = ...
mlseeq(...,'cont',...)

Description y = mlseeq(x,chcffs,const,tblen,opmode) equalizes the baseband
signal vector x using the Viterbi algorithm. chcffs is a vector that
represents the channel coefficients. const is a complex vector that
lists the points in the ideal signal constellation, in the same sequence
that the system’s modulator uses. tblen is the traceback depth. The
equalizer traces back from the state with the best metric. opmode
denotes the operation mode of the equalizer; the choices are described
in the following table.

Value of opmode Typical Usage

'rst' Enables you to specify a preamble and
postamble that accompany your data. The
function processes x independently of data
from any other invocations of this function.
This mode incurs no output delay.

'cont' Enables you to save the equalizer’s internal
state information for use in a subsequent
invocation of this function. Repeated calls
to this function are useful if your data is
partitioned into a series of smaller vectors that
you process within a loop, for example. This
mode incurs an output delay of tblen symbols.

y = mlseeq(x,chcffs,const,tblen,opmode,nsamp) specifies the
number of samples per symbol in x, that is, the oversampling factor.
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The vector length of x must be a multiple of nsamp. When nsamp > 1, the
chcffs input represents the oversampled channel coefficients.

Preamble and Postamble in Reset Operation Mode

y = mlseeq(...,'rst',nsamp,preamble,postamble) specifies the
preamble and postamble that you expect to precede and follow,
respectively, the data in the input signal. The vectors preamble and
postamble consist of integers between 0 and M-1, where M is the order
of the modulation, that is, the number of elements in const. To omit a
preamble or postamble, specify [].

When the function applies the Viterbi algorithm, it initializes state
metrics in a way that depends on whether you specify a preamble
and/or postamble:

• If the preamble is nonempty, the function decodes the preamble and
assigns a metric of 0 to the decoded state. If the preamble does not
decode to a unique state (that is, if the length of the preamble is less
than the channel memory), the decoder assigns a metric of 0 to all
states that can be represented by the preamble. The traceback path
ends at one of the states represented by the preamble.

• If the preamble is unspecified or empty, the decoder initializes the
metrics of all states to 0.

• If the postamble is nonempty, the traceback path begins at the
smallest of all possible decoded states that are represented by the
postamble.

• If the postamble is unspecified or empty, the traceback path starts at
the state with the smallest metric.

Additional Syntaxes in Continuous Operation Mode

y = mlseeq(...,'cont',nsamp,...
init_metric,init_states,init_inputs) causes the equalizer to start
with its state metrics, traceback states, and traceback inputs specified
by init_metric, init_states, and init_inputs, respectively. These
three inputs are typically the extra outputs from a previous call to this
function, as in the syntax below. Each real number in init_metric
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represents the starting state metric of the corresponding state.
init_states and init_inputs jointly specify the initial traceback
memory of the equalizer. The table below shows the valid dimensions
and values of the last three inputs, where numStates is ML-1, M is the
order of the modulation, and L is the number of symbols in the channel’s
impulse response (with no oversampling). To use default values for all
of the last three arguments, specify them as [],[],[].

Input
Argument

Meaning Matrix Size Range of
Values

init_metric State metrics 1 row, numStates
columns

Real numbers

init_states Traceback
states

numStates rows,
tblen columns

Integers
between 0 and
numStates-1

init_inputs Traceback
inputs

numStates rows,
tblen columns

Integers between
0 and M-1

[y,final_metric,final_states,final_inputs] = ...
mlseeq(...,'cont',...) returns the normalized state metrics,
traceback states, and traceback inputs, respectively, at the end of the
traceback decoding process. final_metric is a vector with numStates
elements that correspond to the final state metrics. final_states and
final_inputs are both matrices of size numStates-by-tblen.

Examples The example below illustrates how to use reset operation mode on an
upsampled signal.

M = 2; % Use 2-PAM.
const = pammod([0:M-1],M); % PAM constellation
tblen = 10; % Traceback depth for equalizer
nsamp = 2; % Number of samples per symbol

msgIdx = randint(1000,1,M); % Random bits
msg = upsample(pammod(msgIdx,M),nsamp); % Modulated message
chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients
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chanest = chcoeffs; % Channel estimate
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
msgRx = awgn(filtmsg,5); % Add Gaussian noise.
msgEq = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp); % Equalize.
msgEqIdx = pamdemod(msgEq,M); % Demodulate.

[nerrs ber] = biterr(msgIdx, msgEqIdx) % Bit error rate

The output is shown below. Your results might vary because this
example uses random numbers.

nerrs =

1

ber =

0.0010

The example in “Example: Continuous Operation Mode” illustrates
how to use the final state and initial state arguments when invoking
mlseeq repeatedly.

The example in “Example: Using a Preamble” illustrates how to use
a preamble.

See Also equalize, “Using MLSE Equalizers”

References [1] Proakis, John G., Digital Communications, Fourth Edition, New
York, McGraw-Hill, 2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester,
England, John Wiley & Sons, 1996.
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Purpose Package of modem classes

Description This package contains the modulator and demodulator objects for
performing the following modulations:

• DPSK

• MSK

• OQPSK

• PSK

• PAM

• QAM

• General QAM

Properties and Methods

Each modem object has a method disp to display its properties.

The methods modulate and demodulate are available depending on
whether the class is a modulator or a demodulator.

See Also modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pammod, modem.pskdemod, modem.pskmod, modem.qamdemod, and
modem.qammod
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Purpose Construct DPSK demodulator object

Syntax h = modem.dpskdemod(property1, value1, ...)
h = modem.dpskdemod(DPSKmod_object)
h = modem.dpskdemod(DPSKmod_object, property1, value1, ...)
h = modem.dpskdemod

Description The modem.dpskdemod function creates a modulator object that you can
use with the demodulate method to demodulate a signal. To learn more
about the process for demodulating a signal, see “Using Modem Objects”.

h = modem.dpskdemod(property1, value1, ...) constructs a DPSK
demodulator object h with properties as specified by the property/value
pairs.

h = modem.dpskdemod(DPSKmod_object) constructs a DPSK
demodulator object h by reading the property values from the DPSK
modulator object, DPSKmod_object. The properties that are unique to
the DPSK demodulator object are set to default values.

h = modem.dpskdemod(DPSKmod_object, property1, value1, ...)
constructs a DPSK demodulator object h by reading the property
values from the DPSK modulator object, DPSKmod_object. Additional
properties are specified using property/value pairs.

h = modem.dpskdemod constructs a DPSK demodulator object h with
default properties. It constructs a demodulator object for binary DPSK
demodulation, and is equivalent to:

h = modem.dpskdemod('M', 2, 'PhaseRotation', 0, 'SymbolOrder', ...
'binary', 'OutputType', 'integer', ...
'InitialPhase', 0)

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
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words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties A DPSK demodulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value, set
to 'DPSK Demodulator'.

M Constellation size.
PhaseRotation Specifies the phase rotation (rad) of the modulation.

In this case, the total per-symbol phase shift is the
sum of PhaseRotation and the phase generated by
the differential modulation.

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based on M.
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Property Description

SymbolOrder Type of mapping employed for mapping symbols to
ideal constellation points. The choices are 'binary'
(binary mapping), 'gray' (Gray mapping), and
'user-defined' (custom mapping).

SymbolMapping A list of integer values from 0 to M-1 that correspond
to ideal constellation points. This property
is writable only when SymbolOrder is set to
'user-defined'. Otherwise, it is automatically
computed.

OutputType Type of output to be computed by the DPSK
demodulator object. The choices are 'bit'
(bit/binary output), and 'integer' (integer/symbol
output).

DecisionType Type of output values to be computed by DPSK
demodulator object. This property is set to 'hard
decision' and is not writable.

InitialPhase Initial phase state of the DPSK demodulator.
InitialPhase is used to calculate the first
demodulated symbol.

Methods A DPSK demodulator object has the following four functions for
inspection, management, and simulation:

• demodulate

• disp

• copy

• reset

See Using Modem Objects for details and examples of their use.
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Examples % Construct a demodulator object for 4-DPSK demodulation
% with initial phase pi/4.
h = modem.dpskdemod('M', 4, 'InitialPhase', pi/4)

% Construct an object to compute hard bit decisions of a
% baseband signal using 16-DPSK modulation. The modulated
% signal has a minimum phase rotation of pi/8 per symbol.
% The constellation has Gray mapping.
h = modem.dpskdemod('M', 16, 'SymbolOrder', 'Gray', ...

'PhaseRotation', pi/8, 'OutputType', 'Bit')

% Construct a demodulator object from an existing modulator
% object for DPSK modulation in order to make bit decision.
modObj = modem.dpskmod('M', 8, 'InputType', 'Bit')
demodObj = modem.dpskdemod(modObj)

See Also modem, modem.dpskmod, modem.genqamdemod, modem.genqammod,
modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod,
modem.pamdemod, modem.pammod, modem.pskdemod, modem.pskmod,
modem.qamdemod, and modem.qammod
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Purpose Construct DPSK modulator object

Syntax h = modem.dpskmod(property1, value1, ...)
h = modem.dpskmod(DPSKdemod_object)
h = modem.dpskmod(DPSKdemod_object, property1, value1, ...)
h = modem.dpskmod

Description The modem.dpskmod function creates a modulator object that you can
use with the modulate method to modulate a signal. To learn more
about the process for modulating a signal, see “Using Modem Objects”.

h = modem.dpskmod(property1, value1, ...) constructs a DPSK
modulator object h with properties as specified by the property/value
pairs.

h = modem.dpskmod(DPSKdemod_object) constructs a DPSK
modulator object h by reading the property values from the DPSK
demodulator object, DPSKdemod_object. The properties that are unique
to the DPSK modulator object are set to default values.

h = modem.dpskmod(DPSKdemod_object, property1, value1, ...)
constructs a DPSK modulator object h by reading the property values
from the DPSK demodulator object, DPSKdemod_object. Additional
properties are specified using property/value pairs.

h = modem.dpskmod constructs a DPSK modulator object h with
default properties. It constructs a modulator object for binary DPSK
modulation, and is equivalent to:

h = modem.dpskmod('M', 2, 'PhaseRotation', 0, ...
'SymbolOrder', 'binary', ...
'InputType', 'integer', 'InitialPhase', 0)

Modem Modulation Method

This object has a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.
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x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties A DPSK modulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'DPSK Modulator'.

M Constellation size.
PhaseRotation Specifies the phase rotation (rad) of the

modulation. In this case, the total per-symbol
phase shift is the sum of PhaseRotation and the
phase generated by the differential modulation.

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based
on M.
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Property Description

SymbolOrder Type of mapping employed for mapping symbols
to ideal constellation points. The choices are
'binary' (binary mapping), 'gray' (Gray
mapping), and 'user-defined' (custom
mapping).

SymbolMapping A list of integer values from 0 to M-1 that
correspond to ideal constellation points. This
property is writable only when SymbolOrder
is set to 'user-defined'. Otherwise, it is
automatically computed.

InputType Type of input to be processed by the
DPSK modulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

InitialPhase Initial phase state of the DPSK modulator.
InitialPhase is used to calculate the first
modulated symbol.

Methods A DPSK demodulator object has the following four functions for
inspection, management, and simulation:

• disp

• copy

• modulate

• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a modulator object for 4-DPSK modulation
% with initial phase pi/4.
h = modem.dpskmod('M', 4, 'InitialPhase', pi/4)

2-373



modem.dpskmod

% Construct an object to modulate binary data using
% 16-DPSK modulation with pi/8 degrees minimum phase
% rotation per symbol. The constellation has Gray mapping.
h = modem.dpskmod('M', 16, 'SymbolOrder', 'Gray', ...

'PhaseRotation', pi/8, 'InputType', 'Bit')

% Construct a modulator object from an existing demodulator
% object for DPSK demodulation in order to modulate binary
% inputs.
demodObj = modem.dpskdemod('M', 8) % existing DPSK

% demodulator object
modObj = modem.dpskmod(demodObj)

See Also modem, modem.dpskdemod, modem.genqamdemod, modem.genqammod,
modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod,
modem.pamdemod, modem.pammod, modem.pskdemod, modem.pskmod,
modem.qamdemod, and modem.qammod
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Purpose Construct General QAM demodulator object

Syntax h = modem.genqamdemod(property1, value1, ...)
h = modem.genqamdemod(GENQAMmod_object)
h = modem.genqamdemod(GENQAMmod_object, property1, value1,

...)
h = modem.genqamdemod

Description The modem.genqamdemod function creates a modulator object that you
can use with the demodulate method to demodulate a signal. To learn
more about the process for demodulating a signal, see “Using Modem
Objects”.

h = modem.genqamdemod(property1, value1, ...) constructs a
General QAM demodulator object h with properties as specified by the
property/value pairs.

h = modem.genqamdemod(GENQAMmod_object) constructs a General
QAM demodulator object h by reading the property values from the
General QAM modulator object, GENQAMmod_object. The properties
that are unique to the General QAM demodulator object are set to
default values.

h = modem.genqamdemod(GENQAMmod_object, property1, value1,
...) constructs a General QAM demodulator object h by reading
the property values from the General QAM modulator object,
GENQAMmod_object. Additional properties are specified using
property/value pairs.

h = modem.genqamdemod constructs a General QAM demodulator
object h with default properties. It constructs a demodulator object for
16-QAM modulation and is equivalent to:

h = modem.genqamdemod(('Constellation', [-3+j*3, -3+j*1, ...
-3-j*1, -3-j*3, -1+j*3, -1+j*1, -1-j*1, -1-j*3, ...
1+j*3, 1+j*1, 1-j*1, 1-j*3, 3+j*3, 3+j*1, 3-j*1, ...
3-j*3], 'OutputType', 'integer', ...
'DecisionType', 'hard decision')
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Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties A General QAM demodulator object has the following properties. All
the properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'General QAM Demodulator'.

M M-ary value. This property is not writable,
and is automatically computed based on
Constellation.

Constellation Signal constellation.
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Property Description

OutputType Type of output to be computed by the General
QAM demodulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

DecisionType Type of output values to be computed by the
General QAM demodulator object. The choices
are 'hard decision' (hard decision values),
'llr' (log-likelihood ratio), and 'approximate
llr' (approximate log-likelihood ratio).

NoiseVariance Noise variance of the received signal to be
processed by the General QAM demodulator
object. This is used to compute only the LLR
or approximate LLR. Hence, NoiseVariance is
visible only when DecisionType is set to 'llr'
or 'approximate llr'.

Methods A General QAM demodulator object has the following functions for
inspection, management, and simulation:

• demodulate

• disp

• copy

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a General QAM demodulator object with an
% equidistant 3-point constellation on the unit circle.
M = 3;
h = modem.genqamdemod('Constellation', exp(j*2*pi*[0:M-1]/M))

% Construct a General QAM demodulator object to compute
% log-likelihood ratio of a baseband signal using a two-tiered
% constellation. The estimated noise variance of input signal
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% is 1.2.
h = modem.genqamdemod('Constellation', [exp(j*2*pi*[0:3]/4) ...

2*exp(j*(2*pi*[0:3]/4+pi/4))], ...
'OutputType', 'Bit', 'DecisionType', ...
'LLR', 'NoiseVariance', 1.2)

plot(h.Constellation, '*');grid on;axis('equal',[-2 2 -2 2]);

% Construct a demodulator object from an existing modulator
% object for general QAM modulation in order to compute
% approximate log-likelihood ratio for a baseband signal
% whose estimated noise variance is 0.81.
modObj = modem.genqammod('Constellation', [-1 1 2*j -2*j], ...

'InputType', 'Bit') % existing general QAM modulator object
demodObj = modem.genqamdemod(modObj, 'DecisionType', ...

'Approximate LLR', 'NoiseVariance', 0.81)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqammod,
modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod,
modem.pamdemod, modem.pammod, modem.pskdemod, modem.pskmod,
modem.qamdemod, and modem.qammod
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Purpose Construct General QAM modulator object

Syntax h = modem.genqammod(property1, value1, ...)
h = modem.genqammod(GENQAMdemod_object)
h = modem.genqammod(GENQAMdemod_object, property1, value1,

...)
h = modem.genqammod

Description The modem.genqammod function creates a modulator object that you can
use with the modulate method to modulate a signal. To learn more
about the process for modulating a signal, see “Using Modem Objects”.

h = modem.genqammod(property1, value1, ...) constructs a
General QAM modulator object h with properties as specified by the
property/value pairs.

h = modem.genqammod(GENQAMdemod_object) constructs a General
QAM modulator object h by reading the property values from the
General QAM demodulator object, GENQAMdemod_object. The
properties that are unique to the General QAM modulator object are
set to default values.

h = modem.genqammod(GENQAMdemod_object, property1, value1,
...) constructs a General QAM modulator object h by reading
the property values from the General QAM demodulator object,
GENQAMdemod_object. Additional properties are specified using
property/value pairs.

h = modem.genqammod constructs a General QAM modulator object h
with default properties. It constructs a modulator object for 16-QAM
modulation, and is equivalent to:

h = modem.genqammod('Constellation', [-3+j*3, -3+j*1, ...
-3-j*1, -3-j*3, -1+j*3, -1+j*1, -1-j*1, -1-j*3, ...
1+j*3, 1+j*1, 1-j*1, 1-j*3, 3+j*3, 3+j*1, 3-j*1, ...
3-j*3], 'InputType', 'integer')

Modem Modulation Method

This object has a method modulate that is used to modulate signals.
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The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties “Using Modem Objects”

A General QAM modulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'General QAM Modulator'.

M M-ary value. This property is not writable,
and is automatically computed based on
Constellation.
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Property Description

Constellation Signal constellation..
InputType Type of input to be processed by the General

QAM modulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

Methods A General QAM modulator object has the following functions for
inspection, management, and simulation:

• copy

• disp

• modulate

• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a General QAM modulator object with an
% equidistant 3-point constellation on the unit circle.
M = 3;
h = modem.genqammod('Constellation', exp(j*2*pi*[0:M-1]/M))

% Construct a General QAM object to modulate binary data
% using a two-tiered constellation.
h = modem.genqammod('Constellation', [exp(j*2*pi*[0:3]/4) ...

2*exp(j*(2*pi*[0:3]/4+pi/4))], 'InputType', 'Bit')
plot(h.Constellation, '*');grid on;axis('equal',[-2 2 -2 2]);

% Construct a modulator object from an existing
% demodulator object for general QAM demodulation in order
% to compute approximate log-likelihood ratio for a baseband
% signal whose estimated noise variance is 0.81.
demodObj = modem.genqamdemod('Constellation', [-1 1 2*j -2*j], ...
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'OutputType', 'Bit')
modObj = modem.genqammod(demodObj)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod,
modem.pamdemod, modem.pammod, modem.pskdemod, modem.pskmod,
modem.qamdemod, and modem.qammod
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Purpose Construct MSK demodulator object

Syntax h = modem.mskdemod(property1, value1, ...)
h = modem.mskdemod(MSKmod_object)
h = modem.mskdemod(MSKmod_object, property1, value1, ...)
h = modem.mskdemod

Description The modem.mskdemod function creates a modulator object that you can
use with the demodulate method to demodulate a signal. To learn more
about the process for demodulating a signal, see “Using Modem Objects”.

h = modem.mskdemod(property1, value1, ...) constructs an MSK
demodulator object h with properties as specified by the property/value
pairs.

h = modem.mskdemod(MSKmod_object) constructs an MSK
demodulator object h by reading the property values from the MSK
modulator object, MSKmod_object. The properties that are unique to
the MSK demodulator object are set to default values.

h = modem.mskdemod(MSKmod_object, property1, value1, ...)
constructs an MSK demodulator object h by reading the property values
from the MSK modulator object, MSKmod_object. Additional properties
are specified using property/value pairs.

h = modem.mskdemod constructs an MSK demodulator object h with
default properties. This syntax is equivalent to:

h = modem.mskdemod('Precoding', 'off', ...
'SamplesPerSymbol', 8, 'OutputType', 'bit')

Note The MSK demodulator has a 2-bit delay.

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
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The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties An MSK demodulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'MSK Demodulator'.

M Constellation size. This is a fixed value, set to 2.
Precoding Specifies the type of the coherent MSK

demodulator. The choices are 'off' for
conventional coherent MSK, and 'on' for
precoded coherent MSK.

SamplesPerSymbol Number of samples used to represent an MSK
symbol.

2-384



modem.mskdemod

Property Description

OutputType Type of input to be processed by the
MSK demodulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output). Because the MSK
constellation size is two, 'bit' and 'integer'
are equivalent.

DecisionType Type of output values to be computed by MSK
demodulator object. This property is set to
'hard decision' and is not writable.

Methods An MSK demodulator object has the following four functions for
inspection, management, and simulation:

• demodulate

• disp

• copy

• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct an MSK demodulator object with five samples
% per symbol.
h = modem.mskdemod('SamplesPerSymbol', 5)

% Construct an MSK demodulator object with precoding.
h = modem.mskdemod('Precoding', 'on')

% Construct an MSK demodulator object from an existing
% MSK modulator object.
modObj = modem.mskmod('SamplesPerSymbol', 6, ...

'Precoding', 'on') % existing MSK modulator object
demodObj = modem.mskdemod(modObj)
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% Modulate and demodulate a bit stream.
% Note the 2-bit delay.
demodulate(demodObj, modulate(modObj, ...

[1 1 1 0 0 0 1 0 1 0]'))

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskmod, modem.oqpskdemod,
modem.oqpskmod, modem.pamdemod, modem.pammod, modem.pskdemod,
modem.pskmod, modem.qamdemod, and modem.qammod
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Purpose Construct MSK modulator object

Syntax h = modem.mskmod(property1, value1, ...)
h = modem.mskmod(MSKdemod_object)
h = modem.mskmod(MSKdemod_object, property1, value1, ...)
h = modem.mskmod

Description The modem.mskmod function creates a modulator object that you can use
with the modulate method to modulate a signal. To learn more about
the process for modulating a signal, see “Using Modem Objects”.

h = modem.mskmod(property1, value1, ...) constructs an MSK
modulator object h with properties as specified by the property/value
pairs.

h = modem.mskmod(MSKdemod_object) constructs an MSK modulator
object h by reading the property values from the MSK demodulator
object, MSKdemod_object. The properties that are unique to the MSK
modulator object are set to default values.

h = modem.mskmod(MSKdemod_object, property1, value1, ...)
constructs an MSK modulator object h by reading the property values
from the MSK demodulator object, MSKdemod_object. Additional
properties are specified using property/value pairs.

h = modem.mskmod constructs an MSK modulator object h with default
properties. This syntax is equivalent to:

h = modem.mskmod('Precoding', 'off', ...
'SamplesPerSymbol', 8, 'InputType', 'bit')

Modem Modulation Method

This object has a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.
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When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties An MSK modulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'MSK Modulator'.

M Constellation size. This is a fixed value, set to 2.
Precoding Specifies the type of the coherent MSK

modulator. The choices are 'off' for
conventional coherent MSK, and 'on' for
precoded coherent MSK.

SamplesPerSymbol Number of samples used to represent an MSK
symbol.

InputType Type of input to be processed by the
MSK modulator object. The choices are
'bit' (bit/binary input), and 'integer'
(integer/symbol input). Because the MSK
constellation size is two, 'bit' and 'integer'
are equivalent.
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Methods An MSK modulator object has the following functions for inspection,
management, and simulation:

• copy

• disp

• modulate

• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a modulator object for MSK modulation with
% five samples per symbol.
h = modem.mskmod('SamplesPerSymbol', 5)

% Construct an MSK modulator object with precoding and
% 10 samples per symbol.
h = modem.mskmod('Precoding', 'on', 'SamplesPerSymbol', 10)

% Construct a modulator object from an existing demodulator
% object for MSK demodulation in order to modulate binary
% inputs.
demodObj = modem.mskdemod('SamplesPerSymbol', 6) % existing

% MSK demodulator object
modObj = modem.mskmod(demodObj)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.oqpskdemod,
modem.oqpskmod, modem.pamdemod, modem.pammod, modem.pskdemod,
modem.pskmod, modem.qamdemod, and modem.qammod

2-389



modem.oqpskdemod

Purpose Construct OQPSK demodulator object

Syntax h = modem.oqpskdemod(property1, value1, ...)
h = modem.oqpskdemod(OQPSKmod_object)
h = modem.oqpskdemod(OQPSKmod_object, property1, value1, ...)
h = modem.oqpskdemod

Description The modem.oqpskdemod function creates a modulator object that you
can use with the demodulate method to demodulate a signal. To learn
more about the process for demodulating a signal, see “Using Modem
Objects”.

h = modem.oqpskdemod(property1, value1, ...) constructs an
OQPSK demodulator object h with properties as specified by the
property/value pairs.

h = modem.oqpskdemod(OQPSKmod_object) constructs an OQPSK
demodulator object h by reading the property values from the OQPSK
modulator object, OQPSKmod_object. The properties that are unique to
the OQPSK demodulator object are set to default values.

h = modem.oqpskdemod(OQPSKmod_object, property1, value1,
...) constructs an OQPSK demodulator object h by reading the
property values from the OQPSK modulator object, OQPSKmod_object.
Additional properties are specified using property/value pairs.

h = modem.oqpskdemod constructs an OQPSK demodulator object h
with default properties. This syntax is equivalent to:

h = modem.oqpskdemod('PhaseOffset', 0, 'SymbolOrder', ...
'binary', 'OutputType', 'integer', ...
'DecisionType', 'hard decision')

Note OQPSK demodulators have a 1 symbol delay.

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
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The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties An OQPSK demodulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'OQPSK Demodulator'.

M M-ary value. This property is set to four and is
not writable.

PhaseOffset Phase offset of ideal signal constellation in
radians.

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based
on M and PhaseOffset.
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Property Description

SymbolOrder Type of mapping employed for mapping symbols
to ideal constellation points. The choices are
'binary' (binary mapping), 'gray' (Gray
mapping), and 'user-defined' (custom
mapping).

SymbolMapping A list of integer values from 0 to M-1 that
correspond to ideal constellation points. This
property is writable only when SymbolOrder
is set to 'user-defined'. Otherwise, it is
automatically computed.

OutputType Type of output to be computed by the
OQPSK demodulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

DecisionType Type of output values to be computed by the
OQPSK demodulator object. The choices are
'hard decision' (hard decision values), 'llr'
(log-likelihood ratio), and 'approximate llr'
(approximate log-likelihood ratio).

NoiseVariance Noise variance of the received signal to be
processed by the OQPSK demodulator object.
This property is used to compute only the LLR
or approximate LLR. Hence, NoiseVariance is
visible only when DecisionType is set to 'llr'
or 'approximate llr'.

Methods An OQPSK demodulator object has the following four functions for
inspection, management, and simulation:

• demodulate

• disp

• copy
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• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a demodulator object for OQPSK demodulation
% with default constellation.
h = modem.oqpskdemod

% Construct an object to compute log-likelihood ratio of
% a baseband signal using OQPSK modulation. The
% constellation has Gray mapping and is shifted by -pi/16
% radians. The estimated noise variance of input signal
% is 1.2.
h = modem.oqpskdemod('PhaseOffset', -pi/16, ...

'SymbolOrder', 'Gray', 'OutputType', 'Bit', ...
'DecisionType', 'LLR', 'NoiseVariance', 1.2)

% Construct a demodulator object from an existing
% modulator object for OQPSK modulation in order to
% compute approximate log-likelihood ratio for a
% baseband signal whose estimated noise variance is 0.81.
modObj = modem.oqpskmod('InputType', 'Bit')
demodObj = modem.oqpskdemod(modObj, 'DecisionType', ...

'Approximate LLR', 'NoiseVariance', 0.81)

% Modulate and demodulate a number of symbols.
% Note that there is a one symbol delay.
demodObj = modem.oqpskdemod(modObj);
demodulate(demodObj, modulate(modObj, [0 1 2 3 0 1 2 3]))

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskmod,
modem.pamdemod, modem.pammod, modem.pskdemod, modem.pskmod,
modem.qamdemod, and modem.qammod
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Purpose Construct OQPSK modulator object

Syntax h = modem.oqpskmod(property1, value1, ...)
h = modem.oqpskmod(OQPSKdemod_object)
h = modem.oqpskmod(OQPSKdemod_object, property1, value1, ...)
h = modem.oqpskmod

Description The modem.oqpskmod function creates a modulator object that you can
use with the modulate method to modulate a signal. To learn more
about the process for modulating a signal, see “Using Modem Objects”.

h = modem.oqpskmod(property1, value1, ...) constructs an
OQPSK modulator object h with properties as specified by the
property/value pairs.

h = modem.oqpskmod(OQPSKdemod_object) constructs an OQPSK
modulator object h by reading the property values from the OQPSK
demodulator object, OQPSKdemod_object. The properties that are
unique to the OQPSK modulator object are set to default values.

h = modem.oqpskmod(OQPSKdemod_object, property1, value1,
...) constructs an OQPSK modulator object h by reading the property
values from the OQPSK demodulator object, OQPSKdemod_object.
Additional properties are specified using property/value pairs.

h = modem.oqpskmod constructs an OQPSK modulator object h with
default properties. This syntax is equivalent to:

h = modem.oqpskmod('PhaseOffset', 0, 'SymbolOrder', ...
'binary', 'InputType', 'integer')

Note OQPSK modulators upsample by 2.

Modem Modulation Method

This object has a method modulate that is used to modulate signals.
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The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties An OQPSK modulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed
value, set to 'OQPSK Modulator'.

M M-ary value that is set to four and is not
writable.

PhaseOffset Phase offset of ideal signal constellation in
radians.

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based
on M and PhaseOffset.
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Property Description

SymbolOrder Type of mapping employed for mapping
symbols to ideal constellation points. The
choices are 'binary' (binary mapping), 'gray'
(Gray mapping), and 'user-defined' (custom
mapping).

SymbolMapping A list of integer values from 0 to M-1 that
correspond to ideal constellation points. This
property is writable only when SymbolOrder
is set to 'user-defined'. Otherwise, it is
automatically computed.

InputType Type of input to be processed by the
OQPSK modulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

Methods An OQPSK modulator object has the following functions for inspection,
management, and simulation:

• copy

• disp

• modulate

• reset

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a modulator object for OQPSK modulation
% with default constellation .
h = modem.oqpskmod

% Construct an object to modulate binary data using
% OQPSK modulation. The constellation has Gray mapping
% and is shifted by -pi/16 radians.
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h = modem.oqpskmod('PhaseOffset', -pi/16, ...
'SymbolOrder', 'Gray', 'InputType', 'Bit')

% Construct a modulator object from an existing demodulator
% object for OQPSK demodulation in order to modulate binary
% inputs.
demodObj = modem.oqpskdemod('PhaseOffset', pi/3)
modObj = modem.oqpskmod(demodObj, 'InputType', 'Bit')

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.pamdemod, modem.pammod, modem.pskdemod,
modem.pskmod, modem.qamdemod, and modem.qammod

2-397



modem.pamdemod

Purpose Construct PAM demodulator object

Syntax h = modem.pamdemod(property1, value1, ...)
h = modem.pamdemod(PAMmod_object)
h = modem.pamdemod(PAMmod_object, property1, value1, ...)
h = modem.pamdemod

Description The modem.pamdemod function creates a modulator object that you can
use with the demodulate method to demodulate a signal. To learn more
about the process for demodulating a signal, see “Using Modem Objects”.

h = modem.pamdemod(property1, value1, ...) constructs a PAM
demodulator object h with properties as specified by the property/value
pairs.

h = modem.pamdemod(PAMmod_object) constructs a PAM demodulator
object h by reading the property values from the PAM modulator
object, PAMmod_object. The properties that are unique to the PAM
demodulator object are set to default values.

h = modem.pamdemod(PAMmod_object, property1, value1, ...)
constructs a PAM demodulator object h by reading the property values
from the PAM modulator object, PAMmod_object. Additional properties
are specified using property/value pairs.

h = modem.pamdemod constructs a PAM demodulator object h with
default properties. It constructs a demodulator object for BPAM
demodulation, and is equivalent to:

h = modem.pamdemod('M', 2, 'SymbolOrder', 'binary', ...
'OutputType', 'integer', 'DecisionType', 'hard decision')

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.
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x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties An PAM demodulator object has the following properties. All the
properties are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed
value, set to 'PAM Demodulator'.

M M-ary value.
Constellation Ideal signal constellation. This property is not

writable and is automatically computed based
on M.

SymbolOrder Type of mapping employed for mapping
symbols to ideal constellation points. The
choices are 'binary' (binary mapping), 'gray'
(Gray mapping), and 'user-defined' (custom
mapping).

OutputType Type of output to be computed by the
PAM demodulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).
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Property Description

DecisionType Type of output values to be computed by the
PAM demodulator object. The choices are
'hard decision' (hard decision values),
'llr' (log-likelihood ratio), and 'approximate
llr' (approximate log-likelihood ratio).

NoiseVariance Noise variance of the received signal to be
processed by the PAM demodulator object.
This is used to compute only the LLR or
approximate LLR. Hence, NoiseVariance is
visible only when DecisionType is set to 'llr'
or 'approximate llr'.

Methods A PAM demodulator object has the following four functions for
inspection, management, and simulation:

• demodulate

• disp

• copy

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a demodulator object for 4-PAM demodulation.
h = modem.pamdemod('M', 4)

% Construct an object to compute log-likelihood ratio of
% a baseband signal using 16-PAM modulation. The
% constellation has Gray mapping.
% The estimated noise variance of input signal is 1.2.
h = modem.pamdemod('M', 16, 'SymbolOrder', 'Gray', ...

'OutputType', 'Bit', 'DecisionType', 'LLR', ...
'NoiseVariance', 1.2)

% Construct a demodulator object from an existing modulator
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% object for PAM modulation in order to compute approximate
% log-likelihood ratio for a baseband signal whose estimated
% noise variance is 0.81.
modObj = modem.pammod('M', 8, 'InputType', 'Bit')
demodObj = modem.pamdemod(modObj, 'DecisionType', ...

'Approximate LLR', 'NoiseVariance', 0.81)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, , modem.pskdemod,
modem.pskmod, modem.qamdemod, and modem.qammod
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Purpose Construct PAM modulator object

Syntax h = modem.pammod(property1, value1, ...)
h = modem.pammod(PAMdemod_object)
h = modem.pammod(PAMdemod_object, property1, value1, ...)
h = modem.pammod

Description The modem.pammod function creates a modulator object that you can use
with the modulate method to modulate a signal. To learn more about
the process for modulating a signal, see “Using Modem Objects”.

h = modem.pammod(property1, value1, ...) constructs a PAM
modulator object h with properties as specified by the property/value
pairs.

h = modem.pammod(PAMdemod_object) constructs a PAM modulator
object h by reading the property values from the PAM demodulator
object, PAMdemod_object. The properties that are unique to the PAM
modulator object are set to default values.

h = modem.pammod(PAMdemod_object, property1, value1, ...)
constructs a PAM modulator object h by reading the property values
from the PAM demodulator object, PAMdemod_object. Additional
properties are specified using property/value pairs.

h = modem.pammod constructs a PAM modulator object h with default
properties. It constructs a modulator object for BPAM modulation, and
is equivalent to:

h = modem.pammod('M', 2, 'SymbolOrder', 'binary', ...
'InputType', 'integer')

Modem Modulation Method

This object has a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.
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x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties A PAM modulator object has the following properties. All the properties
are writable unless explicitly noted otherwise.

Property Description

Type Type of modulation object. This is a fixed value,
set to 'PAM Modulator'.

M M-ary value.
Constellation Ideal signal constellation. This property is not

writable and is automatically computed based
on M and PhaseOffset.

SymbolOrder Type of mapping employed for mapping
symbols to ideal constellation points. The
choices are 'binary' (binary mapping), 'gray'
(Gray mapping), and 'user-defined' (custom
mapping).
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Property Description

SymbolMapping A list of integer values from 0 to M-1 that
correspond to ideal constellation points. This
property is writable only when SymbolOrder
is set to 'user-defined'. Otherwise, it is
automatically computed.

InputType Type of input to be processed by the
PAM modulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output).

Methods A PAM modulator object has the following functions for inspection,
management, and simulation:

• copy

• disp

• modulate

See “Using Modem Objects” for details and examples of their use.

Examples % Construct a modulator object for 4-PAM modulation.
h = modem.pammod('M', 4)

% Construct an object to modulate binary data using
% 16-PAM modulation.
% The constellation has Gray mapping.
h = modem.pammod('M', 16, 'SymbolOrder', 'Gray', ...

'InputType', 'Bit')

% Construct a modulator object from an existing
% demodulator object for PAM demodulation in order to
% modulate binary inputs.
demodObj = modem.pamdemod('M', 8)
modObj = modem.pammod(demodObj, 'InputType', 'Bit')
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See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod
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Purpose Construct PSK demodulator object

Syntax h = modem.pskdemod(M)
h = modem.pskdemod(M, phaseoffset)
h = modem.pskdemod(property1, value1, ...)
h = modem.pskdemod
h = modem.pskdemod(pskmod_object)
h = modem.pskdemod(pskmod_object, property1, value1, ...)

Description The modem.pskdemod function creates a demodulator object that you can
use with the demodulate method to demodulate a signal. To learn more
about the process for demodulating a signal, see “Using Modem Objects”.

h = modem.pskdemod(M) constructs a PSK demodulator object h for
M-ary demodulation.

h = modem.pskdemod(M, phaseoffset) constructs a PSK demodulator
object h whose constellation has a phase offset of phaseoffset radians.

h = modem.pskdemod(property1, value1, ...) constructs a PSK
demodulator object h with properties as specified by the property/value
pairs. If a property is not specified, it is assigned a default value. See
the following section on properties.

h = modem.pskdemod constructs a PSK demodulator object h with
default properties. It constructs a demodulator object for BPSK
demodulation and is equivalent to:

h = modem.pskdemod('M', 2, 'PhaseOffset', 0, ...
'SymbolOrder', 'binary', 'OutputType', 'integer', ...
'DecisionType', 'hard decision')

h = modem.pskdemod(pskmod_object) constructs a PSK demodulator
object h by reading the property values from the pskmod_object
PSK modulator object. The properties that are unique to the PSK
demodulator object are set to default values.

h = modem.pskdemod(pskmod_object, property1, value1, ...)
constructs a PSK demodulator object h by reading the property values

2-406



modem.pskdemod

from the pskmod_object PSK modulator object. Additional properties
are specified by the property/value pairs.

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties The following table describes the properties of the PSK demodulator
object.

Property Description

Type Type of modulation object. This property is a
fixed value, set to 'PSK Demodulator'.

M M-ary value. Default is 2.
PhaseOffset Phase offset of ideal signal constellation in

radians. Default is 0.
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Property Description

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based
on the M and PhaseOffset properties.

SymbolOrder Type of mapping employed for mapping
symbols to ideal constellation points. The
choices are 'binary' (binary mapping),
'gray' (Gray mapping), and 'user-defined'
(custom mapping). Default is 'binary'.

SymbolMapping Symbol mapping values corresponding to
ideal constellation points. This property is
writable only when SymbolOrder is set to
'user-defined'. Each element of the symbol
mapping vector contains the symbol mapped to
the corresponding element of the constellation
vector. Thus, the first element of the symbol
mapping vector contains the symbol mapped to
the first element of the constellation vector, the
second element contains the symbol mapped to
the second element of the constellation vector,
and so on.

OutputType Type of output to be computed by the
PSK demodulator object. The choices are
'bit' (bit/binary output), and 'integer'
(integer/symbol output). Default is 'integer'.
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Property Description

DecisionType Type of output values to be computed by the
PSK demodulator object. The choices are
'hard decision' (hard-decision values),
'llr' (log-likelihood ratio), and 'approximate
llr' (approximate log-likelihood ratio).
Default is 'hard decision'.

NoiseVariance Noise variance of the channel or equalized
signal to be processed by the PSK demodulator
object. The noise variance is used to
compute LLR or Approximate LLR, hence
NoiseVariance is visible only when
DecisionType is set to 'llr' or 'approximate
llr'. If the NoiseVariance value is very small
(i.e., SNR is very high), LLR computations may
yield Inf or -Inf because the LLR algorithm
would involve computing exponentials of
very large or very small numbers using finite
precision arithmetic. In such cases, use
approximate LLR, as its algorithm does not
involve computing exponentials.

Methods A PSK demodulator object has the following four functions for
inspection, management, and simulation:

• copy

• disp

• reset

See “Using Modem Objects” for details and examples of their use.

Algorithms See “Exact LLR Algorithm” and “Approximate LLR Algorithm”.
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Examples % Construct a demodulator object for QPSK demodulation.
h = modem.pskdemod(4)

% Construct an object to compute log-likelihood ratio of
% a baseband signal using 16-PSK modulation. The
% constellation has Gray mapping and is shifted by -pi/16
% radians. The estimated noise variance of input
% signal is 1.2.
h = modem.pskdemod('M', 16, 'PhaseOffset', -pi/16, ...

'SymbolOrder', 'Gray', 'OutputType', 'Bit', ...
'DecisionType', 'LLR', 'NoiseVariance', 1.2)

% Construct a demodulator object from an existing
% modulator object for PSK modulation in order to
% compute approximate log-likelihood ratio for
% a baseband signal whose estimated noise variance is 0.81.
modObj = modem.pskmod('M', 8, 'InputType', 'Bit')
demodObj = modem.pskdemod(modObj, 'DecisionType', ...

'Approximate LLR', 'NoiseVariance', 0.81)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pammod, modem.pskmod, modem.qamdemod, and modem.qammod
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Purpose Construct PSK modulator object

Syntax h = modem.pskmod(M)
h = modem.pskmod(M, phaseoffset)
h = modem.pskmod(property1, value1, ...)
h = modem.pskmod(PSKdemod_object)
h = modem.pskmod(PSKdemod_object, property1, value1, ...)
h = modem.pskmod

Description The modem.pskmod function (constructor) creates a modulator object
that you can use with the modulate method to modulate a signal.
To learn more about the process for modulating a signal, see “Using
Modem Objects”.

h = modem.pskmod(M) constructs a PSK modulator object h for M-ary
modulation.

h = modem.pskmod(M, phaseoffset) constructs a PSK modulator
object h whose constellation has a phase offset of phaseoffset radians.

h = modem.pskmod(property1, value1, ...) constructs a PSK
modulator object h with properties as specified by the property/value
pairs. If a property is not specified, it is assigned a default value. See
the following section on properties.

h = modem.pskmod(PSKdemod_object) constructs a PSK modulator
object h by reading the property values from the PSK demodulator
object, PSKdemod_object. The properties that are unique to the PSK
modulator object are set to default values.

h = modem.pskmod(PSKdemod_object, property1, value1, ...)
constructs a PSK modulator object h by reading the property values
from the PSK demodulator object, PSKdemod_object. Additional
properties are specified using property/value pairs.

h = modem.pskmod constructs a PSK modulator object h with default
properties. It constructs a modulator object for BPSK modulation and
is equivalent to:

h = modem.pskmod('M', 2, 'PhaseOffset', 0, 'SymbolOrder',...
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'binary', 'InputType', 'integer')

Modem Modulation Method

This object has a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties The following table describes the properties of the PSK modulator object.

Property Description

Type Type of modulation object. This property is a fixed
value, set to 'PSK Modulator'.

M M-ary value. Default is 2.
PhaseOffset Phase offset of ideal signal constellation in radians.

Default is 0.
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Property Description

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based on the
M and PhaseOffset properties.

SymbolOrder Type of mapping employed for mapping symbols to
ideal constellation points. The choices are 'binary'
(binary mapping), 'gray' (Gray mapping), and
'user-defined' (custom mapping). Default is
'binary'.

SymbolMapping Symbol mapping values corresponding to ideal
constellation points. This property is writable only
when SymbolOrder is set to 'user-defined'. Each
element of the symbol mapping vector contains the
symbol mapped to the corresponding element of the
constellation vector. Thus, the first element of the
symbol mapping vector contains the symbol mapped
to the first element of the constellation vector, the
second element contains the symbol mapped to the
second element of the constellation vector, and so on.

InputType Type of input to be processed by the PSK modulator
object. The choices are 'bit' (bit/binary output),
and 'integer' (integer/symbol output). Default is
'integer'.

Methods A General QAM modulator object has the following functions for
inspection, management, and simulation:

• copy

• disp

• modulate

See “Using Modem Objects” for details and examples of their use.
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Examples % Construct a modulator object for QPSK modulation.
h = modem.pskmod(4)

% Construct a modulator object for 8-PSK modulation with
% constellation shifted by pi/8 radians.
h = modem.pskmod(8, pi/8)

% Construct an object to modulate binary data using 16-PSK .
% modulation. The constellation has Gray mapping and is
% shifted by -pi/16 radians.
h = modem.pskmod('M', 16, 'PhaseOffset', -pi/16, ...

'SymbolOrder', 'Gray', 'InputType', 'Bit')

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pammod, modem.pskdemod, modem.qamdemod, and modem.qammod
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Purpose Construct QAM demodulator object

Syntax h = modem.qamdemod(M)
h = modem.qamdemod(M, phaseoffset)
h = modem.qamdemod(property1, value1, ...)
h = modem.qamdemod(qammod_object)
h = modem.qamdemod(qammod_object, property1, value1, ...)
h = modem.qamdemod

Description The modem.qamdemod function creates a demodulator object that you can
use with the demodulate method to demodulate a signal. To learn more
about the process for demodulating a signal, see “Using Modem Objects”.

h = modem.qamdemod(M) constructs a QAM demodulator object h for
M-ary demodulation.

h = modem.qamdemod(M, phaseoffset) constructs a QAM
demodulator object h whose constellation has a phase offset of
phaseoffset radians.

h = modem.qamdemod(property1, value1, ...) constructs a QAM
demodulator object h with properties as specified by the property/value
pairs. If a property is not specified, it is assigned a default value. See
the following section on properties.

h = modem.qamdemod(qammod_object) constructs a QAM demodulator
object h by reading the property values from the qammod_object
QAM modulator object. The properties that are unique to the QAM
demodulator object are set to default values.

h = modem.qamdemod(qammod_object, property1, value1, ...)
constructs a QAM demodulator object h by reading the property values
from the qammod_object QAM modulator object. Additional properties
are specified by the property/value pairs.

h = modem.qamdemod constructs a QAM demodulator object h with
default properties. It constructs a demodulator object for 16-QAM
demodulation and is equivalent to:

h = modem.qamdemod('M', 16, 'PhaseOffset', 0, 'SymbolOrder',...
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'binary', 'OutputType', 'integer', 'DecisionType',...
'hard decision')

Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a
demodulator object and x is a signal. This syntax processes the binary
words (bits) or symbols (integers) in signal x with the demodulator
object and output the baseband signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set
depending on whether you want hard or soft (LLR or approximate LLR)
decisions. To allow for soft decisions, the demodulator object’s property
OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is
computed for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed
for an input x of size R C× .

See Using Modem Objects for usage examples.

Properties The following table describes the properties of the QAM demodulator
object.

Property Description

Type Type of modulation object. This property is a fixed
value, set to 'QAM Demodulator'.

M M-ary value. Default is 2.
PhaseOffset Phase offset of ideal signal constellation in radians.

Default is 0.
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Property Description

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based on the
M and PhaseOffset properties.

SymbolOrder Type of mapping employed for mapping symbols to
ideal constellation points. The choices are 'binary'
(binary mapping), 'gray' (Gray mapping), and
'user-defined' (custom mapping). Default is
'binary'.

SymbolMapping Symbol mapping values corresponding to ideal
constellation points. This property is writable only
when SymbolOrder is set to 'user-defined'. Each
element of the symbol mapping vector contains the
symbol mapped to the corresponding element of the
constellation vector. Thus, the first element of the
symbol mapping vector contains the symbol mapped
to the first element of the constellation vector, the
second element contains the symbol mapped to the
second element of the constellation vector, and so on.

OutputType Type of output to be computed by the QAM
demodulator object. The choices are 'bit'
(bit/binary output), and 'integer' (integer/symbol
output). Default is 'integer'.
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Property Description

DecisionType Type of output values to be computed by the
QAM demodulator object. The choices are
'hard decision' (hard-decision values), 'llr'
(log-likelihood ratio), and 'approximate llr'
(approximate log-likelihood ratio). Default is 'hard
decision'.

NoiseVariance Noise variance of the channel or equalized signal
to be processed by the QAM demodulator object.
The noise variance is used to compute LLR
or Approximate LLR, hence NoiseVariance is
visible only when DecisionType is set to 'llr' or
'approximate llr'. If the NoiseVariance value is
very small (i.e., SNR is very high), LLR computations
may yield Inf or Inf because the LLR algorithm
would involve computing exponentials of very
large or very small numbers using finite precision
arithmetic. In such cases, use of approximate LLR
is recommended, as its algorithm does not involve
computing exponentials.

Methods A QAM demodulator object has the following functions for inspection,
management, and simulation:

• copy

• demodulate

• disp

See “Using Modem Objects” for details and examples of their use.

Algorithms See “Exact LLR Algorithm” and “Approximate LLR Algorithm”.

Examples % Construct a demodulator object for 16-QAM demodulation.
h = modem.qamdemod % note that default value of M is 16
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% Construct an object to compute log-likelihood ratio of a
% baseband signal using 64-QAM modulation. The constellation
% has Gray mapping.
% The estimated noise variance of input signal is 12.2.
h = modem.qamdemod('M', 64, 'SymbolOrder', 'Gray', ...

'OutputType', 'Bit', 'DecisionType', 'LLR', ...
'NoiseVariance', 12.2)

% Construct a demodulator object from an existing modulator
% object for QAM modulation in order to compute approximate
% log-likelihood ratio for a baseband signal whose estimated
% noise variance is 3.81.
modObj = modem.qammod('M', 8, 'InputType', 'Bit')
demodObj = modem.qamdemod(modObj, 'DecisionType', ...

'Approximate LLR', 'NoiseVariance', 3.81)

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pammod, modem.pskdemod, modem.pskmod, and modem.qammod
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Purpose Construct QAM modulator object

Syntax h = modem.qammod(M)
h = modem.qammod(M, phaseoffset)
h = modem.qammod(property1, value1, ...)
h = modem.qammod(QAMdemod_object)
h = modem.qammod(QAMdemod_object, property1, value1, ...)
h = modem.qammod

Description The modem.qammod function creates a modulator object that you can use
with the modulate method to modulate a signal. To learn more about
the process for modulating a signal, see “Using Modem Objects”.

h = modem.qammod(M) constructs a QAM modulator object h for M-ary
modulation.

h = modem.qammod(M, phaseoffset) constructs a QAM modulator
object h whose constellation has a phase offset of phaseoffset radians.

h = modem.qammod(property1, value1, ...) constructs a QAM
modulator object h with properties as specified by the property/value
pairs. See the following section on properties.

h = modem.qammod(QAMdemod_object) constructs a QAM modulator
object h by reading the property values from the QAM demodulator
object, QAMdemod_object. The properties that are unique to the QAM
modulator object are set to default values.

h = modem.qammod(QAMdemod_object, property1, value1, ...)
constructs a QAM modulator object h by reading the property values
from the QAM demodulator object, QAMdemod_object. Additional
properties are specified using property/value pairs.

h = modem.qammod constructs a QAM modulator object h with default
properties. It constructs a modulator object for 16-QAM modulation
and is equivalent to:

h = modem.qammod('M', 16, 'PhaseOffset', 0, 'SymbolOrder',...
'binary', 'InputType', 'integer')
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Modem Modulation Method

This object has a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a
modulator object and x is a signal. This syntax outputs the baseband
signal y.

x can be a multichannel signal. The columns of x are considered
individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the
most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits
consecutive elements in each channel or column represent a symbol,
where nBits = log2(h.M). The number of elements in each channel must
be an integer multiple of nBits, and elements of x must be 0 or 1. For an
input x of size R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input),
elements of x must be in the range [0, h.M-1]. For an input x of size
R C× , an output y of size R C× is computed.

See Using Modem Objects for usage examples.

Properties The following table describes the properties of the QAM modulator
object.

Property Description

Type Type of modulation object. This property is a fixed
value, set to 'QAM Modulator'.

M M-ary value. Default is 16.
PhaseOffset Phase offset of ideal signal constellation in radians.

Default is 0.
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Property Description

Constellation Ideal signal constellation. This property is not
writable and is automatically computed based on the
M and PhaseOffset properties.

SymbolOrder Type of mapping employed for mapping symbols to
ideal constellation points. The choices are 'binary'
(binary mapping), 'gray' (Gray mapping), and
'user-defined' (custom mapping). Default is
'binary'.

SymbolMapping Symbol mapping values corresponding to ideal
constellation points. This property is writable only
when SymbolOrder is set to 'user-defined'. Each
element of the symbol mapping vector contains
the symbol mapped to the corresponding element
of the constellation vector. The first element of
this vector corresponds to the top-leftmost point
of the constellation, with subsequent elements
running down column-wise, from left to right. The
last element corresponds to the bottom-rightmost
point. Note that when the alphabet size is 4, this
top-down mapping in binary mode effectively creates
a gray-mapped constellation.

InputType Type of input to be processed by the QAM modulator
object. The choices are 'bit' (bit/binary output),
and 'integer' (integer/symbol output). Default is
'integer'.

Methods A QAM modulator object has the following functions for inspection,
management, and simulation:

• copy

• disp

• modulate
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See “Using Modem Objects” for details and examples of their use.

Examples % Construct a modulator object for 32-QAM modulation.
h = modem.qammod(32)

% Construct an object to modulate binary data using 64-QAM
% modulation. The constellation has Gray mapping.
h = modem.qammod('M', 64, 'SymbolOrder', 'Gray', ...

'InputType', 'Bit')

% Construct a modulator object from an existing demodulator
% object for QAM demodulation in order to modulate binary
% inputs.
demodObj = modem.qamdemod('M', 8)
modObj = modem.qammod(demodObj, 'InputType', 'Bit')

See Also modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod,
modem.genqammod, modem.mskdemod, modem.mskmod,
modem.oqpskdemod, modem.oqpskmod, modem.pamdemod,
modem.pammod, modem.pskdemod, modem.pskmod, and modem.qamdemod
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Purpose Scaling factor for normalizing modulation output

Syntax scale = modnorm(const, 'avpow', avpow)
scale = modnorm(const, 'peakpow', peakpow)

Description scale = modnorm(const, 'avpow', avpow) returns a scale factor for
normalizing a PAM or QAM modulator output such that its average
power is avpow (watts). const is a vector specifying the reference
constellation used to generate the scale factor. The function assumes
that the signal to be normalized has a minimum distance of 2.

scale = modnorm(const, 'peakpow', peakpow) returns a scale factor
for normalizing a PAM or QAM modulator output such that its peak
power is peakpow (watts).

Examples The code below illustrates how to use modnorm to transmit a quadrature
amplitude modulated signal having a peak power of one watt.

M = 16; % Alphabet size
const = qammod([0:M-1],M); % Generate the constellation.
x = randint(1,100,M);
scale = modnorm(const,'peakpow',1); % Compute scale factor.
y = scale * qammod(x,M); % Modulate and scale.

ynoisy = awgn(y,10); % Transmit along noisy channel.

ynoisy_unscaled = ynoisy/scale; % Unscale at receiver end.
z = qamdemod(ynoisy_unscaled,M); % Demodulate.

% See how scaling affects constellation.
h = scatterplot(const,1,0,'ro'); % Unscaled constellation
hold on; % Next plot will be in same figure window.
scatterplot(const*scale,1,0,'bx',h); % Scaled constellation
hold off;

In the plot below, the plotting symbol o marks points on the original
QAM signal constellation, and the plotting symbol x marks points on
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the signal constellation as scaled by the output of the modnorm function.
The channel in this example carries points from the scaled constellation.

Additional examples using modnorm are in “Examples of Signal
Constellation Plots”.

See Also pammod, pamdemod, qammod, qamdemod, “Modulation”
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Purpose Minimum shift keying demodulation

Syntax z = mskdemod(y,nsamp)
z = mskdemod(y,nsamp,dataenc)
z = mskdemod(y,nsamp,dataenc,ini_phase)
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)
[z,phaseout] = mskdemod(...)
[z,phaseout,stateout] = mskdemod(...)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.mskdemod instead.

z = mskdemod(y,nsamp) demodulates the complex envelope y of a
signal using the differentially encoded minimum shift keying (MSK)
method. nsamp denotes the number of samples per symbol and must be
a positive integer. The initial phase of the demodulator is 0. If y is a
matrix with multiple rows and columns, the function treats the columns
as independent channels and processes them independently.

z = mskdemod(y,nsamp,dataenc) specifies the method of encoding
data for MSK. dataenc can be either 'diff' for differentially encoded
MSK or 'nondiff' for nondifferentially encoded MSK.

z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial
phase of the demodulator. ini_phase is a row vector whose length is the
number of channels in y and whose values are integer multiples of pi/2.
To avoid overriding the default value of dataenc, set dataenc to [].

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies
the initial state of the demodulator. ini_state contains the last half
symbol of the previously received signal. ini_state is an nsamp-by-C
matrix, where C is the number of channels in y.

[z,phaseout] = mskdemod(...) returns the final phase of y, which is
important for demodulating a future signal. The output phaseout has
the same dimensions as the ini_phase input, and assumes the values
0, pi/2, pi, and 3*pi/2.
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[z,phaseout,stateout] = mskdemod(...) returns the final nsamp
values of y, which is useful for demodulating the first symbol of a future
signal. stateout has the same dimensions as the ini_state input.

Examples The example below illustrates how to modulate and demodulate within
a loop. To provide continuity from one iteration to the next, the syntaxes
for mskmod and mskdemod use initial phases and/or state as both input
and output arguments.

% Define parameters.
numbits = 99; % Number of bits per iteration
numchans = 2; % Number of channels (columns) in signal
nsamp = 16; % Number of samples per symbol

% Initialize.
numerrs = 0; % Number of bit errors seen so far
demod_ini_phase = zeros(1,numchans); % Modulator phase
mod_ini_phase = zeros(1,numchans); % Demodulator phase
ini_state = complex(zeros(nsamp,numchans)); % Demod. state

% Main loop
for iRuns = 1 : 10

x = randint(numbits,numchans); % Binary signal
[y,phaseout] = mskmod(x,nsamp,[],mod_ini_phase);
mod_ini_phase = phaseout; % For next mskmod command
[z, phaseout, stateout] = ...

mskdemod(y,nsamp,[],demod_ini_phase,ini_state);
ini_state = stateout; % For next mskdemod command
demod_ini_phase = phaseout; % For next mskdemod command
numerrs = numerrs + biterr(x,z); % Cumulative bit errors

end
disp(['Total number of bit errors = ' num2str(numerrs)])

The output is as follows.

Total number of bit errors = 0
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References [1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally
Efficient Modulation,” IEEE Communications Magazine, July, 1979,
pp. 14–22.

See Also mskmod, fskmod, fskdemod, “Modulation”
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Purpose Minimum shift keying modulation

Syntax y = mskmod(x,nsamp)
y = mskmod(x,nsamp,dataenc)
y = mskmod(x,nsamp,dataenc,ini_phase)
[y,phaseout] = mskmod(...)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.mskmod instead.

y = mskmod(x,nsamp) outputs the complex envelope y of the
modulation of the message signal x using differentially encoded
minimum shift keying (MSK) modulation. The elements of x must be 0
or 1. nsamp denotes the number of samples per symbol in y and must be
a positive integer. The initial phase of the MSK modulator is 0. If x is a
matrix with multiple rows and columns, the function treats the columns
as independent channels and processes them independently.

y = mskmod(x,nsamp,dataenc) specifies the method of encoding data
for MSK. dataenc can be either 'diff' for differentially encoded MSK
or 'nondiff' for nondifferentially encoded MSK.

y = mskmod(x,nsamp,dataenc,ini_phase) specifies the initial phase
of the MSK modulator. ini_phase is a row vector whose length is the
number of channels in y and whose values are integer multiples of pi/2.
To avoid overriding the default value of dataenc, set dataenc to [].

[y,phaseout] = mskmod(...) returns the final phase of y. This is
useful for maintaining phase continuity when you are modulating a
future bit stream with differentially encoded MSK. phaseout has the
same dimensions as the ini_phase input, and assumes the values 0,
pi/2, pi, and 3*pi/2.

Examples The code below creates an eye diagram from an MSK signal.

x = randint(99,1); % Random signal
y = mskmod(x,8,[],pi/2);
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y = awgn(y,30,'measured');
eyediagram(y,16);

The example on the reference page for mskdemod also uses this function.

References [1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally
Efficient Modulation,” IEEE Communications Magazine, July, 1979,
pp. 14–22.

See Also mskdemod, fskmod, fskdemod, “Modulation”
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Purpose Restore ordering of symbols using specified shift registers

Syntax deintrlved = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay,init_state)

Description deintrlved = muxdeintrlv(data,delay) restores the ordering of
elements in data by using a set of internal shift registers, each with
its own delay value. delay is a vector whose entries indicate how
many symbols each shift register can hold. The length of delay is the
number of shift registers. Before the function begins to process data, it
initializes all shift registers with zeros. If data is a matrix with multiple
rows and columns, the function processes the columns independently.

[deintrlved,state] = muxdeintrlv(data,delay) returns a
structure that holds the final state of the shift registers. state.value
stores any unshifted symbols. state.index is the index of the next
register to be shifted.

[deintrlved,state] = muxdeintrlv(data,delay,init_state)
initializes the shift registers with the symbols contained in
init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is
typically the state output from a previous call to this same function,
and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the muxintrlv function, use the
same delay input in both functions. In that case, the two functions are
inverses in the sense that applying muxintrlv followed by muxdeintrlv
leaves data unchanged, after you take their combined delay of
length(delay)*max(delay) into account. To learn more about delays
of convolutional interleavers, see “Delays of Convolutional Interleavers”.

Examples The example below illustrates how to use the state input and output
when invoking muxdeintrlv repeatedly. Notice that [deintrlved1;
deintrlved2] is the same as deintrlved.
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delay = [0 4 8 12]; % Delays in shift registers

symbols = 100; % Number of symbols to process

% Interleave random data.

intrlved = muxintrlv(randint(symbols,1,2,123),delay);

% Deinterleave some of the data, recording state for later use.

[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);

% Deinterleave the rest of the data, using state as an input argument.

deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);

% Deinterleave all data in one step.

deintrlved = muxdeintrlv(intrlved,delay);

isequal(deintrlved,[deintrlved1; deintrlved2])

The output is below.

ans =

1

Another example using this function is in “Example: Convolutional
Interleavers”.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also muxintrlv, “Interleaving”
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Purpose Permute symbols using shift registers with specified delays

Syntax intrlved = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay,init_state)

Description intrlved = muxintrlv(data,delay) permutes the elements in data
by using internal shift registers, each with its own delay value. delay is
a vector whose entries indicate how many symbols each shift register
can hold. The length of delay is the number of shift registers. Before
the function begins to process data, it initializes all shift registers with
zeros. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

[intrlved,state] = muxintrlv(data,delay) returns a structure
that holds the final state of the shift registers. state.value stores any
unshifted symbols. state.index is the index of the next register to
be shifted.

[intrlved,state] = muxintrlv(data,delay,init_state) initializes
the shift registers with the symbols contained in init_state.value
and directs the first input symbol to the shift register referenced by
init_state.index. The structure init_state is typically the state
output from a previous call to this same function, and is unrelated to
the corresponding deinterleaver.

Examples The examples in “Example: Convolutional Interleavers” and on the
reference page for the convintrlv function use muxintrlv.

The example on the reference page for muxdeintrlv illustrates how to
use the state output and init_state input with that function; the
process is analogous for this function.

References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston,
Kluwer Academic Publishers, 1999.

See Also muxdeintrlv, convintrlv, helintrlv, “Interleaving”
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Purpose Equivalent noise bandwidth of filter

Syntax bw = noisebw(num, den, numsamp, Fs)

Description bw = noisebw(num, den, numsamp, Fs) returns the two-sided
equivalent noise bandwidth, in Hz, of a digital lowpass filter given
in descending powers of z by numerator vector num and denominator
vector den. The bandwidth is calculated over numsamp samples of the
impulse response. Fs is the sampling rate of the signal that the filter
would process; this is used as a scaling factor to convert a normalized
unitless quantity into a bandwidth in Hz.

Examples This example computes the equivalent noise bandwidth of a
Butterworth filter over 100 samples of the impulse response.

Fs = 16; % Sampling rate
Fnyq = Fs/2; % Nyquist frequency
Fc = 0.5; % Carrier frequency
[num,den] = butter(2,Fc/Fnyq); % Butterworth filter
bw = noisebw(num,den,100,Fs)

The output is below.

bw =

1.1049

Algorithm The two-sided equivalent noise bandwidth is

Fs h i

h i

i

N

i

N

( )

( )

2

1

1

2
=

=

∑

∑

2-434



noisebw

where h is the impulse response of the filter described by num and den,
and N is numsamp.

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, New York, Plenum Press, 1992.
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Purpose Construct normalized least mean square (LMS) adaptive algorithm
object

Syntax alg = normlms(stepsize)
alg = normlms(stepsize,bias)

Description The normlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

alg = normlms(stepsize) constructs an adaptive algorithm object
based on the normalized least mean square (LMS) algorithm with a step
size of stepsize and a bias parameter of zero.

alg = normlms(stepsize,bias) sets the bias parameter of the
normalized LMS algorithm. bias must be between 0 and 1. The
algorithm uses the bias parameter to overcome difficulties when the
algorithm’s input signal is small.

Properties

The table below describes the properties of the normalized LMS
adaptive algorithm object. To learn how to view or change the values of
an adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm”.

Property Description

AlgType Fixed value, 'Normalized LMS'

StepSize LMS step size parameter, a
nonnegative real number
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Property Description

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

Bias Normalized LMS bias parameter,
a nonnegative real number

Examples For an example that uses this function, see “Delays from Equalization”.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all weights wi and define
u as the vector of all inputs ui. Based on the current set of weights, w,
this adaptive algorithm creates the new set of weights given by

( )
( ) *

LeakageFactor
StepSize

Bias
w

u e
u uH+

+

where the * operator denotes the complex conjugate and H denotes
the Hermitian transpose.

See Also lms, signlms, varlms, rls, cma, lineareq, dfe, equalize, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, John Wiley & Sons, 1998.
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Purpose Convert octal to decimal numbers

Syntax d = oct2dec(c)

Description d = oct2dec(c) converts an octal matrix c to a decimal matrix d,
element by element. In both octal and decimal representations, the
rightmost digit is the least significant.

Examples The command below converts a 2-by-2 octal matrix.

d = oct2dec([12 144;0 25])

d =

10 100
0 21

For instance, the octal number 144 is equivalent to the decimal number
100 because 144 (octal) = 1*82 + 4*81 + 4*80 = 64 + 32 + 4 = 100.

See Also bi2de
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Purpose Offset quadrature phase shift keying demodulation

Syntax z = oqpskdemod(y)
z = oqpskdemod(y,ini_phase)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.oqpskdemod instead.

z = oqpskdemod(y) demodulates the complex envelope y of an OQPSK
modulated signal. The function implicitly downsamples by a factor of 2
because OQPSK does not permit an odd number of samples per symbol.
If y is a matrix with multiple rows, the function processes the columns
independently.

z = oqpskdemod(y,ini_phase) specifies the phase offset of the
modulated signal in radians.

See Also oqpskmod, pskmod, pskdemod, qammod, qamdemod, modnorm, “Modulation”
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Purpose Offset quadrature phase shift keying modulation

Syntax y = oqpskmod(x)
y = oqpskmod(x,ini_phase)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.oqpskmod instead.

y = oqpskmod(x) outputs the complex envelope y of the modulation
of the message signal x using offset quadrature phase shift keying
(OQPSK) modulation. The message signal must consist of integers
between 0 and 3. The function implicitly upsamples by a factor of 2
because OQPSK does not permit an odd number of samples per symbol.
If x is a matrix with multiple rows, the function processes the columns
independently.

y = oqpskmod(x,ini_phase) specifies the phase offset of the
modulated signal in radians.

See Also oqpskdemod, pskmod, pskdemod, qammod, qamdemod, modnorm,
“Modulation”
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Purpose Pulse amplitude demodulation

Syntax z = pamdemod(y,M)
z = pamdemod(y,M,ini_phase)
z = pamdemod(y,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.pamdemod instead.

z = pamdemod(y,M) demodulates the complex envelope y of a pulse
amplitude modulated signal. M is the alphabet size. The ideal modulated
signal should have a minimum Euclidean distance of 2.

z = pamdemod(y,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = pamdemod(y,M,ini_phase,symbol_order) specifies how
the function assigns binary words to corresponding integers. If
symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a
Gray-coded ordering.

Examples The example in “Comparing Theoretical and Empirical Error Rates”
uses this function.

See Also pammod, qamdemod, qammod, pskdemod, pskmod, “Modulation”
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Purpose Pulse amplitude modulation

Syntax y = pammod(x,M)
y = pammod(x,M,ini_phase)
y = pammod(x,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.pammod instead.

y = pammod(x,M) outputs the complex envelope y of the modulation
of the message signal x using pulse amplitude modulation. M is the
alphabet size. The message signal must consist of integers between 0
and M-1. The modulated signal has a minimum Euclidean distance of 2.
If x is a matrix with multiple rows, the function processes the columns
independently.

y = pammod(x,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

y = pammod(x,M,ini_phase,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set
to 'bin' (default), the function uses a natural binary-coded ordering. If
symbol_order is set to 'gray', it uses a Gray constellation ordering.

Examples The example in “Comparing Theoretical and Empirical Error Rates”
uses this function.

See Also pamdemod, qammod, qamdemod, pskmod, pskdemod, “Modulation”
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Purpose Plot channel characteristics with channel visualization tool

Syntax plot(h)

Description plot(h), where h is a channel object, launches the channel visualization
tool. This GUI tool allows you to plot channel characteristics in various
ways. See “Using the Channel Visualization Tool” for details.

Examples Examples using this plotting tool are found in “Examples of Using the
Channel Visualization Tool”.

See Also filter, rayleighchan, ricianchan
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Purpose Phase demodulation

Syntax z = pmmod(y,Fc,Fs,phasedev)
z = pmmod(y,Fc,Fs,phasedev,ini_phase)

Description z = pmmod(y,Fc,Fs,phasedev) demodulates the phase-modulated
signal y at the carrier frequency Fc (hertz). z and the carrier signal have
sampling rate Fs (hertz), where Fs must be at least 2*Fc. The phasedev
argument is the phase deviation of the modulated signal, in radians.

z = pmmod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phase
of the modulated signal, in radians.

Examples The example in “Analog Modulation Example” uses pmdemod.

See Also pmmod, fmmod, fmdemod, “Modulation”
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Purpose Phase modulation

Syntax y = pmmod(x,Fc,Fs,phasedev)
y = pmmod(x,Fc,Fs,phasedev,ini_phase)

Description y = pmmod(x,Fc,Fs,phasedev) modulates the message signal x using
phase modulation. The carrier signal has frequency Fc (hertz) and
sampling rate Fs (hertz), where Fs must be at least 2*Fc. The phasedev
argument is the phase deviation of the modulated signal in radians.

y = pmmod(x,Fc,Fs,phasedev,ini_phase) specifies the initial phase
of the modulated signal in radians.

Examples The example in “Analog Modulation Example” uses pmmod.

See Also pmdemod, fmmod, fmdemod, “Modulation”
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Purpose Convert convolutional code polynomials to trellis description

Syntax trellis = poly2trellis(ConstraintLength,CodeGenerator)
trellis = poly2trellis(ConstraintLength,CodeGenerator,...
FeedbackConnection)

Description The poly2trellis function accepts a polynomial description of a
convolutional encoder and returns the corresponding trellis structure
description. The output of poly2trellis is suitable as an input to
the convenc and vitdec functions, and as a mask parameter for the
Convolutional Encoder, Viterbi Decoder, and APP Decoder blocks in
Communications Blockset™ software.

trellis = poly2trellis(ConstraintLength,CodeGenerator)
performs the conversion for a rate k/n feedforward encoder.
ConstraintLength is a 1-by-k vector that specifies the delay for the
encoder’s k input bit streams. CodeGenerator is a k-by-n matrix of
octal numbers that specifies the n output connections for each of the
encoder’s k input bit streams.

trellis = poly2trellis(ConstraintLength,CodeGenerator,...
FeedbackConnection) is the same as the syntax above, except that it
applies to a feedback, not feedforward, encoder. FeedbackConnection is
a 1-by-k vector of octal numbers that specifies the feedback connections
for the encoder’s k input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields are
as in the table below.

Fields of the Output Structure trellis for a Rate k/n Code

Field in trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the
encoder: 2k
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Fields of the Output Structure trellis for a Rate k/n Code
(Continued)

Field in trellis
Structure

Dimensions Meaning

numOutputSymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in
the encoder

nextStates numStates-by-2k
matrix

Next states for all
combinations of
current state and
current input

outputs numStates-by-2k
matrix

Outputs (in octal)
for all combinations
of current state and
current input

For more about this structure, see the reference page for the istrellis
function.

Examples An example of a rate 1/2 encoder is in “Polynomial Description of a
Convolutional Encoder”.

As another example, consider the rate 2/3 feedforward convolutional
encoder depicted in the figure below. The reference page for the convenc
function includes an example that uses this encoder.
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For this encoder, the ConstraintLength vector is [5,4] and the
CodeGenerator matrix is [23,35,0; 0,5,13]. The output below reveals
part of the corresponding trellis structure description of this encoder.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis =

numInputSymbols: 4
numOutputSymbols: 8

numStates: 128
nextStates: [128x4 double]

outputs: [128x4 double]

The scalar field trellis.numInputSymbols has the value 4 because the
combination of two input bit streams can produce four different input
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symbols. Similarly, trellis.numOutputSymbols is 8 because the three
output bit streams can produce eight different output symbols.

The scalar field trellis.numStates is 128 (that is, 27) because each of
the encoder’s seven memory registers can have one of two binary values.

To get details about the matrix fields trellis.nextStates and
trellis.outputs, inquire specifically about them. As an example,
the command below displays the first five rows of the 128-by-4 matrix
trellis.nextStates.

trellis.nextStates(1:5,:)

ans =

0 64 8 72
0 64 8 72
1 65 9 73
1 65 9 73
2 66 10 74

This first row indicates that if the encoder starts in the zeroth state and
receives input bits of 00, 01, 10, or 11, respectively, the next state will
be the 0th, 64th, 8th, or 72nd state, respectively. The 64th state means
that the bottom-left memory register in the diagram contains the value
1, while the other six memory registers contain zeros.

See Also istrellis, convenc, vitdec, “Convolutional Coding”
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Purpose Find primitive polynomials for Galois field

Syntax pr = primpoly(m)
pr = primpoly(m,opt)
pr = primpoly(m...,'nodisplay')

Description pr = primpoly(m) returns the primitive polynomial for GF(2^m), where
m is an integer between 2 and 16. The Command Window displays
the polynomial using "D" as an indeterminate quantity. The output
argument pr is an integer whose binary representation indicates the
coefficients of the polynomial.

pr = primpoly(m,opt) returns one or more primitive polynomials
for GF(2^m). The output pol depends on the argument opt as shown
in the table below. Each element of the output argument pr is an
integer whose binary representation indicates the coefficients of the
corresponding polynomial. If no primitive polynomial satisfies the
constraints, pr is empty.

opt Meaning of pr

'min' One primitive polynomial for
GF(2^m) having the smallest
possible number of nonzero terms

'max' One primitive polynomial for
GF(2^m) having the greatest
possible number of nonzero terms

'all' All primitive polynomials for
GF(2^m)

Positive integer k All primitive polynomials for
GF(2^m) that have k nonzero
terms
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pr = primpoly(m...,'nodisplay') prevents the function from
displaying the result as polynomials in "D" in the Command Window.
The output argument pr is unaffected by the 'nodisplay' option.

Examples The first example below illustrates the formats that primpoly uses in
the Command Window and in the output argument pr. The subsequent
examples illustrate the display options and the use of the opt argument.

pr = primpoly(4)

pr1 = primpoly(5,'max','nodisplay')

pr2 = primpoly(5,'min')

pr3 = primpoly(5,2)

pr4 = primpoly(5,3);

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

pr =

19

pr1 =

61

Primitive polynomial(s) =
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D^5+D^2+1

pr2 =

37

No primitive polynomial satisfies the given constraints.

pr3 =

[]

Primitive polynomial(s) =

D^5+D^2+1
D^5+D^3+1

See Also isprimitive, “Galois Field Computations”
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Purpose Phase shift keying demodulation

Syntax z = pskdemod(y,M)
z = pskdemod(y,M,ini_phase)
z = pskdemod(y,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.pskdemod instead.

z = pskdemod(y,M) demodulates the complex envelope y of a PSK
modulated signal. M is the alphabet size and must be an integer power
of 2. The initial phase of the modulation is zero. If y is a matrix
with multiple rows and columns, the function processes the columns
independently.

z = pskdemod(y,M,ini_phase) specifies the initial phase of the
modulation in radians.

z = pskdemod(y,M,ini_phase,symbol_order) specifies how
the function assigns binary words to corresponding integers. If
symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a
Gray-coded ordering.

Examples The example below compares PSK and PAM (phase amplitude
modulation) to show that PSK is more sensitive to phase noise. This
is the expected result because the PSK constellation is circular, and
the PAM constellation is linear.

len = 10000; % Number of symbols
M = 16; % Size of alphabet
msg = randint(len,1,M); % Original signal

% Modulate using both PSK and PAM,
% to compare the two methods.
txpsk = pskmod(msg,M);
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txpam = pammod(msg,M);

% Perturb the phase of the modulated signals.
phasenoise = randn(len,1)*.015;
rxpsk = txpsk.*exp(j*2*pi*phasenoise);
rxpam = txpam.*exp(j*2*pi*phasenoise);

% Create a scatter plot of the received signals.
scatterplot(rxpsk); title('Noisy PSK Scatter Plot')
scatterplot(rxpam); title('Noisy PAM Scatter Plot')

% Demodulate the received signals.
recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);

% Compute number of symbol errors in each case.
numerrs_psk = symerr(msg,recovpsk)
numerrs_pam = symerr(msg,recovpam)

The output and scatter plots are below. Your results might vary because
this example uses random numbers.

numerrs_psk =

374

numerrs_pam =

1
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See Also pskmod, qamdemod, qammod, dpskmod, dpskdemod, modnorm, “Modulation”
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Purpose Phase shift keying modulation

Syntax y = pskmod(x,M)
y = pskmod(x,M,ini_phase)
y = pskmod(x,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.pskmod instead.

y = pskmod(x,M) outputs the complex envelope y of the modulation of
the message signal x using phase shift keying modulation. M is the
alphabet size and must be an integer power of 2. The message signal
must consist of integers between 0 and M-1. The initial phase of the
modulation is zero. If x is a matrix with multiple rows and columns, the
function processes the columns independently.

y = pskmod(x,M,ini_phase) specifies the initial phase of the
modulation in radians.

y = pskmod(x,M,ini_phase,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set
to 'bin' (default), the function uses a natural binary-coded ordering. If
symbol_order is set to 'gray', it uses a Gray constellation ordering.

Examples The examples in “Constellation for 16-PSK” and on the reference page
for pskdemod use this function.

See Also dpskmod, dpskdemod, pskdemod, pammod, pamdemod, qammod, qamdemod,
modnorm, “Modulation”
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Purpose Quadrature amplitude demodulation

Syntax z = qamdemod(y,M)
z = qamdemod(y,M,ini_phase)
z = qamdemod(y,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.qamdemod instead.

z = qamdemod(y,M) demodulates the complex envelope y of a
quadrature amplitude modulated signal. M is the alphabet size and
must be an integer power of 2. The constellation is the same as in
qammod. If y is a matrix with multiple rows, the function processes the
columns independently.

z = qamdemod(y,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = qamdemod(y,M,ini_phase,symbol_order) specifies how
the function assigns binary words to corresponding integers. If
symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a
Gray-coded ordering.

Examples The code below suggests which regions in the complex plane are
associated with different digits that can form the output of the
demodulator. The code demodulates random points, looks for points
that were demapped to the digits 0 and 3, and plots those points in
red and blue, respectively. Notice that the regions reflect a rotation of
the signal constellation by pi/8.

% Construct [in-phase, quadrature] for random points.
y = 4*(rand(1000,1)-1/2)+j*4*(rand(1000,1)-1/2);
% Demodulate using an initial phase of pi/8.
z = qamdemod(y,4,pi/8);
% Find indices of points that mapped to the digits 0 and 3.
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red = find(z==0);
blue = find(z==3);
% Plot points corresponding to 0 and 3.
h = scatterplot(y(red,:),1,0,'r.'); hold on
scatterplot(y(blue,:),1,0,'b.',h);
legend('Points corresponding to 0','Points corresponding to 3');
hold off

Another example using this function is in “Computing the Symbol
Error Rate”.

See Also qammod, genqamdemod, genqammod, pamdemod, modnorm, “Modulation”
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Purpose Quadrature amplitude modulation

Syntax y = qammod(x,M)
y = qammod(x,M,ini_phase)
y = qammod(x,M,ini_phase,symbol_order)

Description Warning

This function is obsolete and may be removed in the future. We
strongly recommend that you use modem.qammod instead.

y = qammod(x,M) outputs the complex envelope y of the modulation of
the message signal x using quadrature amplitude modulation. M is the
alphabet size and must be an integer power of 2. The message signal
must consist of integers between 0 and M-1. The signal constellation
is rectangular or cross-shaped, and the nearest pair of points in the
constellation is separated by 2. If x is a matrix with multiple rows, the
function processes the columns independently.

y = qammod(x,M,ini_phase) specifies the initial phase of the
modulated signal in radians.

y = qammod(x,M,ini_phase,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set
to 'bin' (default), the function uses a natural binary-coded ordering. If
symbol_order is set to 'gray', it uses a Gray constellation ordering.

Examples Examples using this function are in “Computing the Symbol Error Rate”
and “Examples of Signal Constellation Plots”.

See Also qamdemod, genqammod, genqamdemod, pammod, pamdemod, modnorm,
“Modulation”
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Purpose Q function

Syntax y = qfunc(x)

Description y = qfunc(x) is one minus the cumulative distribution function of the
standardized normal random variable, evaluated at each element of the
real array x. For a scalar x, the formula is

Q x t dt
x

( ) exp( / )= −
∞

∫1
2

22

π

The Q function is related to the complementary error function, erfc,
according to

Q x
x

( ) = ⎛
⎝⎜

⎞
⎠⎟

1
2 2

erfc

Examples The example below computes the Q function on a matrix, element by
element.

x = [0 1 2; 3 4 5];
format short e % Switch to floating point format for displays.
y = qfunc(x)
format % Return to default format for displays.

The output is below.

y =

5.0000e-001 1.5866e-001 2.2750e-002
1.3499e-003 3.1671e-005 2.8665e-007

See Also qfuncinv, erf, erfc, erfcx, erfinv, erfcinv
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Purpose Inverse Q function

Syntax y = qfuncinv(x)

Description y = qfuncinv(x) returns the argument of the Q function at which the
Q function’s value is x. The input x must be a real array with elements
between 0 and 1, inclusive.

For a scalar x, the Q function is one minus the cumulative distribution
function of the standardized normal random variable, evaluated at x.
The Q function is defined as

Q x t dt
x

( ) exp( / )= −
∞

∫1
2

22

π

The Q function is related to the complementary error function, erfc,
according to

Q x
x

( ) = ⎛
⎝⎜

⎞
⎠⎟

1
2 2

erfc

Examples The example below illustrates the inverse relationship between qfunc
and qfuncinv.

x1 = [0 1 2; 3 4 5];
y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.
x2 = 0:.2:1;
y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.

The output is below.
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y1 =

0 1 2
3 4 5

y2 =

0 0.2000 0.4000 0.6000 0.8000 1.0000

See Also qfunc, erf, erfc, erfcx, erfinv, erfcinv
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Purpose Produce quantization index and quantized output value

Syntax index = quantiz(sig,partition)
[index,quants] = quantiz(sig,partition,codebook)
[index,quants,distor] = quantiz(sig,partition,codebook)

Description index = quantiz(sig,partition) returns the quantization levels in
the real vector signal sig using the parameter partition. partition is
a real vector whose entries are in strictly ascending order. If partition
has length n, index is a vector whose kth entry is

• 0 if sig(k) ≤ partition(1)

• m if partition(m) < sig(k) ≤ partition(m+1)

• n if partition(n) < sig(k)

[index,quants] = quantiz(sig,partition,codebook) is the same
as the syntax above, except that codebook prescribes a value for each
partition in the quantization and quants contains the quantization of
sig based on the quantization levels and prescribed values. codebook is
a vector whose length exceeds the length of partition by one. quants
is a row vector whose length is the same as the length of sig. quants is
related to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is
the same as the syntax above, except that distor estimates the mean
square distortion of this quantization data set.

Examples The command below rounds several numbers between 1 and 100 up to
the nearest multiple of 10. quants contains the rounded numbers, and
index tells which quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)
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The output is below.

index =

0 3 8 3 2

quants =

10 40 90 40 30

See Also lloyds, dpcmenco, dpcmdeco, “Quantizing a Signal”
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Purpose Restore ordering of symbols using random permutation

Syntax deintrlvd = randdeintrlv(data,state)

Description deintrlvd = randdeintrlv(data,state) restores the original
ordering of the elements in data by inverting a random permutation.
The state parameter initializes the random number generator that the
function uses to determine the permutation. state is either a scalar or
a 35x1 vector, and is described in the rand function, which is used in
randintrlv. The function is predictable for a given state, but different
states produce different permutations. If data is a matrix with multiple
rows and columns, the function processes the columns independently.

To use this function as an inverse of the randintrlv function, use the
same state input in both functions. In that case, the two functions
are inverses in the sense that applying randintrlv followed by
randdeintrlv leaves data unchanged.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples For an example using random interleaving and deinterleaving, see
“Example: Block Interleavers”.

See Also rand, randintrlv, “Interleaving”
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Purpose Generate bit error patterns

Syntax out = randerr(m)
out = randerr(m,n)
out = randerr(m,n,errors)
out = randerr(m,n,prob,state)

Description For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, each row of
which has exactly one nonzero entry in a random position. Each
allowable configuration has an equal probability.

out = randerr(m,n) generates an m-by-n binary matrix, each row
of which has exactly one nonzero entry in a random position. Each
allowable configuration has an equal probability.

out = randerr(m,n,errors) generates an m-by-n binary matrix, where
errors determines how many nonzero entries are in each row:

• If errors is a scalar, it is the number of nonzero entries in each row.

• If errors is a row vector, it lists the possible number of nonzero
entries in each row.

• If errors is a matrix having two rows, the first row lists the possible
number of nonzero entries in each row and the second row lists the
probabilities that correspond to the possible error counts.

Once randerr determines the number of nonzero entries in a given
row, each configuration of that number of nonzero entries has equal
probability.

out = randerr(m,n,prob,state) is the same as the syntax above,
except that it first resets the state of the uniform random number
generator rand to the integer state.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.
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Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples The examples below generate an 8-by-7 binary matrix, each row of
which is equally likely to have either zero or two nonzero entries, and
then alter the scenario by making it three times as likely that a row has
two nonzero entries. Notice in the latter example that the second row of
the error parameter sums to one.

out = randerr(8,7,[0 2])

out2 = randerr(8,7,[0 2; .25 .75])

Sample output is below.

out =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 1
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
1 0 1 0 0 0 0

out2 =

0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
0 0 0 1 0 1 0
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0 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 1 0 0

See Also rand, randsrc, randint, “Signal Sources”
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Purpose Generate matrix of uniformly distributed random integers

Syntax out = randint
out = randint(m)
out = randint(m,n)
out = randint(m,n,rg)
out = randint(m,n,rg,state)

Description out = randint generates a random scalar that is either 0 or 1, with
equal probability.

out = randint(m) generates an m-by-m binary matrix, each of whose
entries independently takes the value 0 with probability 1/2.

out = randint(m,n) generates an m-by-n binary matrix, each of whose
entries independently takes the value 0 with probability 1/2.

out = randint(m,n,rg) generates an m-by-n integer matrix. If rg
is zero, out is a zero matrix. Otherwise, the entries are uniformly
distributed and independently chosen from the range

• [0, rg-1] if rg is a positive integer

• [rg+1, 0] if rg is a negative integer

• Between min and max, inclusive, if rg = [min,max] or [max,min]

out = randint(m,n,rg,state) is the same as the syntax above, except
that it first resets the state of the uniform random number generator
rand to the integer state.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.
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Examples To generate a 10-by-10 matrix whose elements are uniformly distributed
in the range from 0 to 7, use either of the following commands.

out = randint(10,10,[0,7]);

out = randint(10,10,8);

See Also rand, randsrc, randerr, “Signal Sources”
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Purpose Reorder symbols using random permutation

Syntax intrlvd = randintrlv(data,state)

Description intrlvd = randintrlv(data,state) rearranges the elements in data
using a random permutation. The state parameter initializes the
random number generator that the function uses to determine the
permutation. state is either a scalar or a 35x1 vector, and is described
in the rand function, which is used in randintrlv. The function is
predictable and invertible for a given state, but different states produce
different permutations. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples For an example using random interleaving and deinterleaving, see
“Example: Block Interleavers”.

See Also rand, randdeintrlv, “Interleaving”
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Purpose Generate random matrix using prescribed alphabet

Syntax out = randsrc
out = randsrc(m)
out = randsrc(m,n)
out = randsrc(m,n,alphabet)
out = randsrc(m,n,[alphabet; prob])
out = randsrc(m,n,...,state);

Description out = randsrc generates a random scalar that is either -1 or 1, with
equal probability.

out = randsrc(m) generates an m-by-m matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with
probability 1/2.

out = randsrc(m,n) generates an m-by-n matrix, each of whose entries
independently takes the value -1 with probability 1/2, and 1 with
probability 1/2.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, each of
whose entries is independently chosen from the entries in the row vector
alphabet. Each entry in alphabet occurs in out with equal probability.
Duplicate values in alphabet are ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix,
each of whose entries is independently chosen from the entries in the
row vector alphabet. Duplicate values in alphabet are ignored. The
row vector prob lists corresponding probabilities, so that the symbol
alphabet(k) occurs with probability prob(k), where k is any integer
between one and the number of columns of alphabet. The elements
of prob must add up to 1.

out = randsrc(m,n,...,state); is the same as the two preceding
syntaxes, except that it first resets the state of the uniform random
number generator rand to the integer state.

This function uses, by default, the Mersenne Twister algorithm by
Nishimura and Matsumoto.
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Note Using the state parameter causes this function to switch
random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed
among members of the set {-3,-1,1,3}, you can use either of these
commands.

out = randsrc(10,10,[-3 -1 1 3]);

out = randsrc(10,10,[-3 -1 1 3; .25 .25 .25 .25]);

To skew the probability distribution so that -1 and 1 each occur with
probability .3, while -3 and 3 each occur with probability .2, use this
command.

out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);

See Also rand, randint, randerr, “Signal Sources”
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Purpose Construct Rayleigh fading channel object

Syntax chan = rayleighchan(ts,fd)
chan = rayleighchan(ts,fd,tau,pdb)
chan = rayleighchan

Description chan = rayleighchan(ts,fd) constructs a frequency-flat (“single
path”) Rayleigh fading channel object. ts is the sample time of the
input signal, in seconds. fd is the maximum Doppler shift, in hertz.
You can model the effect of the channel on a signal x by using the
syntax y = filter(chan,x).

chan = rayleighchan(ts,fd,tau,pdb) constructs a
frequency-selective (“multiple path”) fading channel object that models
each discrete path as an independent Rayleigh fading process. tau is
a vector of path delays, each specified in seconds. pdb is a vector of
average path gains, each specified in dB.

With the above two syntaxes, a smaller fd (a few hertz to a fraction of
a hertz) leads to slower variations, and a larger fd (a couple hundred
hertz) to faster variations.

chan = rayleighchan constructs a frequency-flat Rayleigh channel
object with no Doppler shift. This is a static channel. The sample time
of the input signal is irrelevant for frequency-flat static channels.

Properties

The tables below describe the properties of the channel object, chan,
that you can set and that MATLAB technical computing software sets
automatically. To learn how to view or change the values of a channel
object, see “Viewing Object Properties” or “Changing Object Properties”.
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Writeable Properties

Property Description

InputSamplePeriod Sample period of the signal on
which the channel acts, measured
in seconds.

DopplerSpectrum Doppler spectrum object(s). The
default is a Jakes Doppler object.

MaxDopplerShift Maximum Doppler shift of the
channel, in hertz (applies to all
paths of a channel).

PathDelays Vector listing the delays of the
discrete paths, in seconds.

AvgPathGaindB Vector listing the average gain of
the discrete paths, in decibels.

NormalizePathGains If 1, the Rayleigh fading process
is normalized such that the
expected value of the path gains’
total power is 1.

StoreHistory If this value is 1, channel
state information needed by
the channel visualization tool
is stored as the channel filter
function processes the signal. The
default value is 0.
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Writeable Properties (Continued)

Property Description

StorePathGains If set to 1, the complex path gain
vector is stored as the channel
filter function processes the
signal. The default value is 0.

ResetBeforeFiltering If 1, each call to filter resets the
state of chan before filtering. If
0, the fading process maintains
continuity from one call to the
next.

Read-Only Properties

Property Description When MATLAB
Sets or Updates
Value

ChannelType Fixed value,
'Rayleigh'

When you create
object

PathGains Complex vector listing
the current gains of the
discrete paths. When
you create or reset chan,
PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create
object, reset object,
or use it to filter a
signal
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Read-Only Properties (Continued)

Property Description When MATLAB
Sets or Updates
Value

ChannelFilterDelay Delay of the channel
filter, measured in
samples

When you
create object or
change ratio of
InputSamplePeriod
to PathDelays

NumSamplesProcessed Number of samples the
channel processed since
the last reset. When you
create or reset chan, this
property value is 0.

When you create
object, reset object,
or use it to filter a
signal

Relationships Among Properties

The PathDelays and AvgPathGaindB properties of the channel object
must always have the same vector length, because this length equals
the number of discrete paths of the channel. The DopplerSpectrum
property must either be a single Doppler object or a vector of Doppler
objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or
zero-pads the value of AvgPathGaindB if necessary to adjust its vector
length (MATLAB may also change the values of read-only properties
such as PathGains and ChannelFilterDelay). If DopplerSpectrum is
a vector of Doppler objects, and you increase or decrease the length
of PathDelays, MATLAB will add Jakes Doppler objects or remove
elements from DopplerSpectrum, respectively, to make it the same
length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel
state information as the channel filter function processes the signal.
You can then visualize this state information through a GUI using the
plot (channel) method.
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Note Setting StoreHistory to 1 will result in a slower simulation.
If you do not want to visualize channel state information using plot
(channel), but want to access the complex path gains, then set
StorePathGains to 1, while keeping StoreHistory as 0.

Visualization of Channel

The characteristics of a channel can be plotted using the channel
visualization tool. See “Using the Channel Visualization Tool” for
details.

Examples Several examples using this function are in “Fading Channels”.

The example below illustrates that when you change the value of
PathDelays, MATLAB automatically changes the values of other
properties to make their vector lengths consistent with that of the new
value of PathDelays.

c1 = rayleighchan(1e-5,130) % Create object.
c1.PathDelays = [0 1e-6] % Change the number of delays.
% MATLAB automatically changes the size of c1.AvgPathGaindB,
% c1.PathGains, and c1.ChannelFilterDelay.

The output below displays all the properties of the channel object
before and after the change in the value of the PathDelays property.
In the second listing of properties, the AvgPathGaindB, PathGains, and
ChannelFilterDelay properties all have different values compared
to the first listing of properties.

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays: 0
AvgPathGaindB: 0
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NormalizePathGains: 1
StoreHistory: 0

PathGains: 0.2104- 0.6197i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays: [0 1.0000e-006]
AvgPathGaindB: [0 0]

NormalizePathGains: 1
StoreHistory: 0

PathGains: [-0.3088+ 0.1842i 0.3008- 0.0338i]
ChannelFilterDelay: 4

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

Algorithm The methodology used to simulate fading channels is described in
“Simulation of Multipath Fading Channels: Methodology”. The
properties of the channel object are related to the quantities of the
latter section as follows:

• The InputSamplePeriod property contains the value of Ts .

• The PathDelays vector property contains the values of τk{ } , where
1 ≤ ≤k K .

• The PathGains read-only property contains the values of ak{ } ,
where 1 ≤ ≤k K .
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• The AvgPathGaindB vector property contains the values of

10 10
2log E ak

⎡
⎣⎢

⎤
⎦⎥{ } , where 1 ≤ ≤k K , and E ⋅[ ] denotes statistical

expectation.

• The ChannelFilterDelay read-only property contains the value of
N1 .

See Also ricianchan, filter, plot (channel), reset, “Fading Channels”

References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York,
Kluwer Academic/Plenum, 2000.
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Purpose Design raised cosine finite impulse response (FIR) filter

Syntax b = rcosfir(R,n_T,rate,T)
b = rcosfir(R,n_T,rate,T,filter_type)
rcosfir(...)
rcosfir(...,colr)
[b,sample_time] = rcosfir(...)

Optional
Inputs

Input Default Value

n_T 3

rate 5

T 1

Description The rcosfir function designs the same filters that the rcosine
function designs when the latter’s type_flag argument includes 'fir'.
However, rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

h t
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R t T
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−
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π
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1 4 2 2 2

b = rcosfir(R,n_T,rate,T) designs a raised cosine filter and returns
a vector b of length(n_T(2) - n_T(1))*rate + 1. The filter’s rolloff
factor is R, a real number between 0 and 1, inclusive. T is the duration
of each bit in seconds. n_T is a scalar or a vector of length 2. If n_T is
specified as a scalar, the filter length is 2*n_T+1 input samples. If n_T is
a vector, it specifies the extent of the filter. In this case, the filter length
is n_T(2)-n_T(1)+1 input samples (or (n_T(2)-n_T(1))*rate+1
output samples).
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rate is the number of points in each input symbol period of length T.
rate must be greater than 1. The input sample rate is T samples per
second, while the output sample rate is T*rate samples per second.

The order of the FIR filter is

(n_T(2)-n_T(1))*rate

The arguments n_T, rate, and T are optional inputs whose default
values are 3, 5, and 1, respectively.

b = rcosfir(R,n_T,rate,T,filter_type) designs a square-root
raised cosine filter if filter_type is 'sqrt'. If filter_type is
'normal', this syntax is the same as the previous one.

The impulse response of a square root raised cosine filter is

h t R

R t T
R t T

R
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T Rt T
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−
4
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rcosfir(...) produces plots of the time and frequency responses of
the raised cosine filter.

rcosfir(...,colr) uses the string colr to determine the plotting
color. The choices for colr are the same as those listed for the plot
function.

[b,sample_time] = rcosfir(...) returns the FIR filter and its
sample time.

Examples The commands below compare different rolloff factors.

rcosfir(0);
subplot(211); hold on;
subplot(212); hold on;
rcosfir(.5,[],[],[],[],'r-');
rcosfir(1,[],[],[],[],'g-');
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See Also rcosiir, rcosflt, rcosine, firrcos, rcosdemo, “Special Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.
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Purpose Filter input signal using raised cosine filter

Syntax y = rcosflt(x,Fd,Fs)
y = rcosflt(x,Fd,Fs,'type_flag',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay)
y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...)
[y,t] = rcosflt(...)

Optional
Inputs

Input Default Value

filter_type fir/normal

r 0.5

delay 3

tol 0.01

den 1

Description The function rcosflt passes an input signal through a raised
cosine filter. You can either let rcosflt design a raised cosine filter
automatically or you can specify the raised cosine filter yourself using
input arguments.

Designing the Filter Automatically

y = rcosflt(x,Fd,Fs) designs a raised cosine FIR filter and then
filters the input signal x using it. The sample frequency for the digital
input signal x is Fd, and the sample frequency for the output signal y
is Fs. The ratio Fs/Fd must be an integer. In the course of filtering,
rcosflt upsamples the data by a factor of Fs/Fd, by inserting zeros
between samples. The order of the filter is 1+2*delay*Fs/Fd, where
delay is 3 by default. If x is a vector, then the sizes of x and y are
related by this equation.
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length(y) = (length(x) + 2 * delay)*Fs/Fd

Otherwise, y is a matrix, each of whose columns is the result of filtering
the corresponding column of x.

y = rcosflt(x,Fd,Fs,'type_flag',r,delay,tol) designs a raised
cosine FIR or IIR filter and then filters the input signal x using it. The
ratio Fs/Fd must be an integer. r is the rolloff factor for the filter,
a real number in the range [0, 1]. delay is the filter’s group delay,
measured in input samples. The actual group delay in the filter design
is delay/Fd seconds. The input tol is the tolerance in the IIR filter
design. FIR filter design does not use tol.

The characteristics of x, Fd, Fs, and y are as in the first syntax.

The fourth input argument, ’type_flag’, determines the type of filter
that rcosflt should design and can have up to three components: filter
type, sample frequency, and filter.

Values of filter_type to Determine the Type of Filter

Type of Filter Value of filter_type

FIR raised cosine filter fir or fir/normal

IIR raised cosine filter iir or iir/normal

Square-root FIR raised cosine
filter

fir/sqrt

Square-root IIR raised cosine
filter

iir/sqrt

y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol) is the same
as the previous syntax, except that it assumes that x has sample
frequency Fs. This syntax does not upsample x any further. If x is a
vector, then the relative sizes of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)
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As before, if x is a nonvector matrix, y is a matrix, each of whose
columns is the result of filtering the corresponding column of x.

Specifying the Filter Using Input Arguments

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den) filters the
input signal x using a filter whose transfer function numerator and
denominator are given in num and den, respectively. If type_filter
includes fir, then omit den. This syntax uses the same arguments x,
Fd, Fs, and type_filter as explained in the first and second syntaxes
above.

y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay) uses
delay in the same way that the rcosine function uses it. This syntax
assumes that the filter described by num, den, and delay was designed
using rcosine.

As before, if x is a nonvector matrix, y is a matrix each of whose columns
is the result of filtering the corresponding column of x.

y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...) is the
same as the earlier syntaxes, except that it assumes that x has sample
frequency Fs instead of Fd. This syntax does not upsample x any further.
If x is a vector, the relative sizes of x and y are related by this equation.

length(y) = length(x) + (2 * delay * Fs/Fd)

Additional Output

[y,t] = rcosflt(...) outputs t, a vector that contains the sampling
time points of y.

See Also rcosine, rcosfir, rcosiir, rcosdemo, “Special Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.
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Purpose Design raised cosine infinite impulse response (IIR) filter

Syntax [num,den] = rcosiir(R,T_delay,rate,T,tol)
[num,den] = rcosiir(R,T_delay,rate,T,tol,type_filter)
rcosiir(...)
rcosiir(...,colr)
[num,den,sample_time] = rcosiir(...)

Optional
Inputs

Input Default Value

T_delay 3

rate 5

T 1

tol 0.01

Description The rcosiir function designs the same filters that the rcosine
function designs when the latter’s type_flag argument includes 'iir'.
However, rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form
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[num,den] = rcosiir(R,T_delay,rate,T,tol) designs an IIR
approximation of an FIR raised cosine filter, and returns the numerator
and denominator of the IIR filter. The filter’s rolloff factor is R, a real
number between 0 and 1, inclusive. T is the symbol period in seconds.
The filter’s group delay is T_delay symbol periods. rate is the number
of sample points in each interval of duration T. rate must be greater
than 1. The input sample rate is T samples per second, while the output
sample rate is T*rate samples per second. If tol is an integer greater
than 1, it becomes the order of the IIR filter; if tol is less than 1, it
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indicates the relative tolerance for rcosiir to use when selecting the
order based on the singular values.

The arguments T_delay, rate, T, and tol are optional inputs whose
default values are 3, 5, 1, and 0.01, respectively.

[num,den] = rcosiir(R,T_delay,rate,T,tol,type_filter)
designs a square-root raised cosine filter if type_filter is 'sqrt'. If
type_filter is 'normal', this syntax is the same as the previous one.

rcosiir(...) plots the time and frequency responses of the raised
cosine filter.

rcosiir(...,colr) uses the string colr to determine the plotting
color. The choices for colr are the same as those listed for the plot
function.

[num,den,sample_time] = rcosiir(...) returns the transfer
function and the sample time of the IIR filter.

Examples The script below compares different values of T_delay.

rcosiir(0,10);
subplot(211); hold on;
subplot(212); hold on;
col = ['r-';'g-';'b-';'m-';'c-';'w-'];
R = [8,6,4,3,2,1];
for ii = R

rcosiir(0,ii,[],[],[],[],col(find(R==ii),:));
end;

This example shows how the filter’s frequency response more closely
approximates that of the ideal raised cosine filter as T_delay increases.

See Also rcosfir, rcosflt, rcosine, rcosdemo, “Special Filters”

References [1] Kailath, Thomas, Linear Systems, Englewood Cliffs, N.J.,
Prentice-Hall, 1980.
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[2] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.
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Purpose Design raised cosine filter

Syntax num = rcosine(Fd,Fs)
[num,den] = rcosine(Fd,Fs,type_flag)
[num,den] = rcosine(Fd,Fs,type_flag,r)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol)

Description num = rcosine(Fd,Fs) designs a finite impulse response (FIR) raised
cosine filter and returns its transfer function. The digital input signal
has sampling frequency Fd. The sampling frequency for the filter is Fs.
The ratio Fs/Fd must be a positive integer greater than 1. The default
rolloff factor is .5. The filter’s group delay, which is the time between
the input to the filter and the filter’s peak response, is three input
samples. Equivalently, the group delay is 3/Fd seconds.

[num,den] = rcosine(Fd,Fs,type_flag) designs a raised cosine filter
using directions in the string variable type_flag. Filter types are listed
in the table below, along with the corresponding values of type_flag.

Types of Filter and Corresponding Values of type_flag

Type of Filter Value of type_flag

Finite impulse response (FIR) 'default' or 'fir/normal'

Infinite impulse response (IIR) 'iir' or ’'iir/normal'’
Square-root raised cosine FIR 'sqrt' or 'fir/sqrt'

Square-root raised cosine IIR 'iir/sqrt'

The default tolerance value in IIR filter design is 0.01.

[num,den] = rcosine(Fd,Fs,type_flag,r) specifies the rolloff factor,
r. The rolloff factor is a real number in the range [0, 1].
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[num,den] = rcosine(Fd,Fs,type_flag,r,delay) specifies the
filter’s group delay, measured in input samples. delay is a positive
integer. The actual group delay in the filter design is delay/Fd seconds.

[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol) specifies the
tolerance in the IIR filter design. FIR filter design does not use tol.

See Also rcosflt, rcosiir, rcosfir, rcosdemo, “Special Filters”

References [1] Korn, Israel, Digital Communications, New York, Van Nostrand
Reinhold, 1985.
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Purpose Rectangular pulse shaping

Syntax y = rectpulse(x,nsamp)

Description y = rectpulse(x,nsamp) applies rectangular pulse shaping to
x to produce an output signal having nsamp samples per symbol.
Rectangular pulse shaping means that each symbol from x is repeated
nsamp times to form the output y. If x is a matrix with multiple rows,
the function treats each column as a channel and processes the columns
independently.

Note To insert zeros between successive samples of x instead of
repeating the samples of x, use the upsample function instead.

Examples An example in “Combining Pulse Shaping and Filtering with
Modulation” uses this function in conjunction with modulation.

The code below processes two independent channels, each containing
three symbols of data. In the pulse-shaped matrix y, each symbol
contains four samples.

nsamp = 4; % Number of samples per symbol
nsymb = 3; % Number of symbols
ch1 = randint(nsymb,1,2,68521); % Random binary channel
ch2 = [1:nsymb]';
x = [ch1 ch2] % Two-channel signal
y = rectpulse(x,nsamp)

The output is below. In y, each column corresponds to one channel
and each row corresponds to one sample. Also, the first four rows of y
correspond to the first symbol, the next four rows of y correspond to the
second symbol, and the last four rows of y correspond to the last symbol.
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x =

1 1
1 2
0 3

y =

1 1
1 1
1 1
1 1
1 2
1 2
1 2
1 2
0 3
0 3
0 3
0 3

See Also intdump, upsample, rcosflt
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Purpose Reset channel object

Syntax reset(chan)
reset(chan,randstate)

Description reset(chan) resets the channel object chan, initializing the PathGains
and NumSamplesProcessed properties as well as internal filter states.
This syntax is useful when you want the effect of creating a new
channel.

reset(chan,randstate) resets the channel object chan and initializes
the state of the random number generator that the channel uses.
randstate is a two-element column vector. This syntax is useful when
you want to repeat previous numerical results that started from a
particular state.

Examples The example below shows how to get repeatable results. The example
chooses a state for the random number generator immediately after
defining the channel object and later resets the random number
generator to that state.

% Set up channel.
% Assume you want to maintain continuity
% from one filtering operation to the next, except
% when you explicitly reset the channel.
c = rayleighchan(1e-4,100);
reset(c,[11; 13]); % Choose arbitrary state.
c.ResetBeforeFiltering = 0;

% Filter some data.
sig = randint(100,1);
y1 = [filter(c,sig(1:50)) filter(c,sig(51:end))];

% Try to repeat the results.
reset(c,[11; 13]); % Use same state as before.
y2 = [filter(c,sig(1:50)) filter(c,sig(51:end))];
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isequal(y1,y2) % y1 and y2 should be the same.

The output is below.

ans =

1

See Also rayleighchan, ricianchan, filter, “Fading Channels”
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Purpose Reset equalizer object

Syntax reset(eqobj)

Description reset(eqobj) resets the equalizer object eqobj, initializing the
Weights, WeightInputs, and NumSamplesProcessed properties and the
adaptive algorithm states. If eqobj is a CMA equalizer, reset does
not change the Weights property.

See Also dfe, equalize, lineareq, “Equalizers”
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Purpose Construct Rician fading channel object

Syntax chan = ricianchan(ts,fd,k)
chan = ricianchan(ts,fd,k,tau,pdb)
chan = ricianchan(ts,fd,k,tau,pdb,fdLOS)
chan = ricianchan

Description chan = ricianchan(ts,fd,k) constructs a frequency-flat (single path)
Rician fading-channel object. ts is the sample time of the input signal,
in seconds. fd is the maximum Doppler shift, in hertz. k is the Rician
K-factor in linear scale. You can model the effect of the channel chan
on a signal x by using the syntax y = filter(chan,x). See filter
(channel) for more information.

chan = ricianchan(ts,fd,k,tau,pdb) constructs a
frequency-selective (multiple paths) fading-channel object. If k is
a scalar, then the first discrete path is a Rician fading process (it
contains a line-of-sight component) with a K-factor of k, while the
remaining discrete paths are independent Rayleigh fading processes (no
line-of-sight component). If k is a vector of the same size as tau, then
each discrete path is a Rician fading process with a K-factor given by
the corresponding element of the vector k. tau is a vector of path delays,
each specified in seconds. pdb is a vector of average path gains, each
specified in dB.

chan = ricianchan(ts,fd,k,tau,pdb,fdLOS) specifies fdlos as the
Doppler shift(s) of the line-of-sight component(s) of the discrete path(s),
in hertz. fdlos must be the same size as k. If k and fdlos are scalars,
the line-of-sight component of the first discrete path has a Doppler
shift of fdlos, while the remaining discrete paths are independent
Rayleigh fading processes. If fdlos is a vector of the same size as k, the
line-of-sight component of each discrete path has a Doppler shift given
by the corresponding element of the vector fdlos. By default, fdlos
is 0. The initial phase(s) of the line-of-sight component(s) can be set
through the property DirectPathInitPhase.

chan = ricianchan sets the maximum Doppler shift to 0, the Rician
K-factor to 1, and the Doppler shift and initial phase of the line-of-sight
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component to 0. This syntax models a static frequency-flat channel,
and, in this trivial case, the sample time of the signal is unimportant.

Properties

The following tables describe the properties of the channel object, chan,
that you can set and that MATLAB technical computing software sets
automatically. To learn how to view or change the values of a channel
object, see “Viewing Object Properties” or “Changing Object Properties”.

Writeable Properties

Property Description

InputSamplePeriod Sample period of the signal on
which the channel acts, measured
in seconds.

DopplerSpectrum Doppler spectrum object(s). The
default is a Jakes doppler object.

MaxDopplerShift Maximum Doppler shift of the
channel, in hertz (applies to all
paths of a channel).

KFactor Rician K-factor (scalar or
vector). The default value is 1
(line-of-sight component on the
first path only).

PathDelays Vector listing the delays of the
discrete paths, in seconds.

AvgPathGaindB Vector listing the average gain of
the discrete paths, in decibels.

DirectPathDopplerShift Doppler shift(s) of the line-of-sight
component(s) in hertz. The
default value is 0.
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Writeable Properties (Continued)

Property Description

DirectPathInitPhase Initial phase(s) of line-of-sight
component(s) in radians. The
default value is 0.

NormalizePathGains If this value is 1, the Rayleigh
fading process is normalized such
that the expected value of the
path gains’ total power is 1.

StoreHistory If this value is 1, channel
state information needed by
the channel visualization tool
is stored as the channel filter
function processes the signal. The
default value is 0.

StorePathGains If this value is 1, the complex
path gain vector is stored as the
channel filter function processes
the signal. The default value is 0.

ResetBeforeFiltering If this value is 1, each call
to filter resets the state of
chan before filtering. If it is 0,
the fading process maintains
continuity from one call to the
next.
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Read-Only Properties

Property Description When MATLAB
Sets or Updates
Value

ChannelType Fixed value, 'Rician'. When you create
object.

PathGains Complex vector listing
the current gains of the
discrete paths. When
you create or reset chan,
PathGains is a random
vector influenced by
AvgPathGaindB and
NormalizePathGains.

When you create
object, reset object,
or use it to filter a
signal.

ChannelFilterDelay Delay of the channel
filter, measured in
samples.

When you
create object or
change ratio of
InputSamplePeriod
to PathDelays.

NumSamplesProcessed Number of samples the
channel processed since
the last reset. When you
create or reset chan, this
property value is 0.

When you create
object, reset object,
or use it to filter a
signal.

Relationships Among Properties

Changing the length of PathDelays also changes the length of
AvgPathGaindB, the length of KFactor if KFactor is a vector (no change
if it is a scalar), and the length of DopplerSpectrum if DopplerSpectrum
is a vector (no change if it is a single object).

DirectPathDopplerShift and DirectPathInitPhase both follow
changes in KFactor.
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The PathDelays and AvgPathGaindB properties of the channel object
must always have the same vector length, because this length equals
the number of discrete paths of the channel. The DopplerSpectrum
property must either be a single Doppler object or a vector of Doppler
objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or
zero-pads the value of AvgPathGaindB if necessary to adjust its vector
length (MATLAB may also change the values of read-only properties
such as PathGains and ChannelFilterDelay). If DopplerSpectrum is
a vector of Doppler objects, and you increase or decrease the length
of PathDelays, MATLAB will add Jakes Doppler objects or remove
elements from DopplerSpectrum, respectively, to make it the same
length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel
state information as the channel filter function processes the signal.
You can then visualize this state information through a GUI using the
plot (channel) method.

Note Setting StoreHistory to 1 will result in a slower simulation.
If you do not want to visualize channel state information using plot
(channel), but want to access the complex path gains, then set
StorePathGains to 1, while keeping StoreHistory as 0.

Reset Method

If MaxDopplerShift is set to 0 (the default), the channel object, chan,
models a static channel.

Use the syntax reset(chan) to generate a new channel realization.

Algorithm

The methodology used to simulate fading channels is described in
“Simulation of Multipath Fading Channels: Methodology”, where
the properties specific to the Rician channel object are related to the
quantities of this section as follows (see the rayleighchan reference
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page for properties common to both Rayleigh and Rician channel
objects):

• The Kfactor property contains the value of Kr (if it’s a scalar) or

Kr k,{ } , 1≤ ≤k K (if it’s a vector).

• The DirectPathDopplerShift property contains the value of fd LOS,

(if it’s a scalar) or fd LOS k, ,{ } , 1≤ ≤k K (if it’s a vector).

• The DirectPathInitPhase property contains the value of θLOS (if

it’s a scalar) or θLOS k,{ } , 1≤ ≤k K (if it’s a vector).

Channel
Visualization

The characteristics of a channel can be plotted using the channel
visualization tool. See “Using the Channel Visualization Tool” for
details.

Examples The example in “Quasi-Static Channel Modeling” uses this function.

See Also rayleighchan, filter, plot (channel), reset, “Fading Channels”

References [1] Jeruchim, M., Balaban, P., and Shanmugan, K., Simulation
of Communication Systems, Second Edition, New York, Kluwer
Academic/Plenum, 2000.
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Purpose Construct recursive least squares (RLS) adaptive algorithm object

Syntax alg = rls(forgetfactor)
alg = rls(forgetfactor,invcorr0)

Description The rls function creates an adaptive algorithm object that you can use
with the lineareq function or dfe function to create an equalizer object.
You can then use the equalizer object with the equalize function to
equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

alg = rls(forgetfactor) constructs an adaptive algorithm object
based on the recursive least squares (RLS) algorithm. The forgetting
factor is forgetfactor, a real number between 0 and 1. The inverse
correlation matrix is initialized to a scalar value.

alg = rls(forgetfactor,invcorr0) sets the initialization parameter
for the inverse correlation matrix. This scalar value is used to initialize
or reset the diagonal elements of the inverse correlation matrix.

Properties

The table below describes the properties of the RLS adaptive algorithm
object. To learn how to view or change the values of an adaptive
algorithm object, see “Accessing Properties of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'RLS'
ForgetFactor Forgetting factor
InvCorrInit Scalar value used to initialize or

reset the diagonal elements of the
inverse correlation matrix

Also, when you use this adaptive algorithm object to create an equalizer
object (via the lineareq function or dfe function), the equalizer object
has an InvCorrMatrix property that represents the inverse correlation
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matrix for the RLS algorithm. The initial value of InvCorrMatrix is
InvCorrInit*eye(N), where N is the total number of equalizer weights.

Examples For examples that use this function, see “Defining an Equalizer Object”
and “Example: Adaptive Equalization Within a Loop”.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all weights wi and define u
as the vector of all inputs ui. Based on the current set of inputs, u, and
the current inverse correlation matrix, P, this adaptive algorithm first
computes the Kalman gain vector, K

K
Pu

u PuH=
+( )ForgetFactor

where H denotes the Hermitian transpose.

Then the new inverse correlation matrix is given by

(ForgetFactor)-1(P – KuHP)

and the new set of weights is given by

w + K*e

where the * operator denotes the complex conjugate.

See Also lms, signlms, normlms, varlms, lineareq, dfe, equalize, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, John Wiley & Sons, 1998.

[2] Haykin, S., Adaptive Filter Theory, Third Ed., Upper Saddle River,
NJ, Prentice-Hall, 1996.
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[3] Kurzweil, J., An Introduction to Digital Communications, New York,
John Wiley & Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.
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Purpose Reed-Solomon decoder

Syntax decoded = rsdec(code,n,k)
decoded = rsdec(code,n,k,genpoly)
decoded = rsdec(...,paritypos)
[decoded,cnumerr] = rsdec(...)
[decoded,cnumerr,ccode] = rsdec(...)

Description decoded = rsdec(code,n,k) attempts to decode the received signal
in code using an [n,k] Reed-Solomon decoding process with the
narrow-sense generator polynomial. code is a Galois array of symbols
having m bits each. Each n-element row of code represents a corrupted
systematic codeword, where the parity symbols are at the end and the
leftmost symbol is the most significant symbol. n is at most 2m-1. If n
is not exactly 2m-1, rsdec assumes that code is a corrupted version
of a shortened code.

In the Galois array decoded, each row represents the attempt at
decoding the corresponding row in code. A decoding failure occurs if
rsdec detects more than (n-k)/2 errors in a row of code. In this case,
rsdec forms the corresponding row of decoded by merely removing n-k
symbols from the end of the row of code.

decoded = rsdec(code,n,k,genpoly) is the same as the syntax
above, except that a nonempty value of genpoly specifies the generator
polynomial for the code. In this case, genpoly is a Galois row vector that
lists the coefficients, in order of descending powers, of the generator
polynomial. The generator polynomial must have degree n-k. To use
the default narrow-sense generator polynomial, set genpoly to [].

decoded = rsdec(...,paritypos) specifies whether the parity
symbols in code were appended or prepended to the message in
the coding operation. The string paritypos can be either 'end' or
'beginning'. The default is 'end'. If paritypos is 'beginning',
a decoding failure causes rsdec to remove n-k symbols from the
beginning rather than the end of the row.

[decoded,cnumerr] = rsdec(...) returns a column vector cnumerr,
each element of which is the number of corrected errors in the
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corresponding row of code. A value of -1 in cnumerr indicates a
decoding failure in that row in code.

[decoded,cnumerr,ccode] = rsdec(...) returns ccode, the
corrected version of code. The Galois array ccode has the same format
as code. If a decoding failure occurs in a certain row of code, the
corresponding row in ccode contains that row unchanged.

Examples The example below encodes three message words using a (7,3)
Reed-Solomon encoder. It then corrupts the code by introducing one
error in the first codeword, two errors in the second codeword, and three
errors in the third codeword. Then rsdec tries to decode the corrupted
code.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6; 5 1 1],m); % Three rows of m-bit symbols
code = rsenc(msg,n,k);
errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);
noisycode = code + errors;
[dec,cnumerr] = rsdec(noisycode,n,k)

The output is below.

dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

2 7 3
4 0 6
0 7 6

cnumerr =

1
2

-1
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The output shows that rsdec successfully corrects the errors in the
first two codewords and recovers the first two original message words.
However, a (7,3) Reed-Solomon code can correct at most two errors
in each word, so rsdec cannot recover the third message word. The
elements of the vector cnumerr indicate the number of corrected errors
in the first two words and also indicate the decoding failure in the
third word.

For additional examples, see “Creating and Decoding Reed-Solomon
Codes”.

Limitations n and k must differ by an even integer. n must be between 3 and 65535.

Algorithm rsdec uses the Berlekamp-Massey decoding algorithm. For information
about this algorithm, see the works listed in “References” on page 2-508
below.

See Also rsenc, gf, rsgenpoly, “Block Coding”

References [1] Wicker, S. B., Error Control Systems for Digital Communication and
Storage, Upper Saddle River, NJ, Prentice Hall, 1995.

[2] Berlekamp, E. R., Algebraic Coding Theory, New York, McGraw-Hill,
1968.
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Purpose Decode ASCII file encoded using Reed-Solomon code

Syntax rsdecof(file_in,file_out); rsdecof(file_in,file_out,err_cor);

Description This function is the inverse process of the function rsencof in that it
decodes a file that rsencof encoded.

rsdecof(file_in,file_out) decodes the ASCII file file_in that was
previously created by the function rsencof using an error-correction
capability of 5. The decoded message is written to file_out. Both
file_in and file_out are string variables.

Note If the number of characters in file_in is not an integer multiple
of 127, the function appends char(4) symbols to the data it must
decode. If you encode and then decode a file using rsencof and rsdecof,
respectively, the decoded file might have char(4) symbols at the end
that the original file does not have.

rsdecof(file_in,file_out,err_cor) is the same as the first syntax,
except that err_cor specifies the error-correction capability for
each block of 127 codeword characters. The message length is 127
- 2 *err_cor. The value in err_cor must match the value used in
rsencof when file_in was created.

Examples An example is on the reference page for rsencof.

See Also rsencof, “Block Coding”
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Purpose Reed-Solomon encoder

Syntax code = rsenc(msg,n,k)
code = rsenc(msg,n,k,genpoly)
code = rsenc(...,paritypos)

Description code = rsenc(msg,n,k) encodes the message in msg using an [n,k]
Reed-Solomon code with the narrow-sense generator polynomial. msg is
a Galois array of symbols having m bits each. Each k-element row of
msg represents a message word, where the leftmost symbol is the most
significant symbol. n is at most 2m-1. If n is not exactly 2m-1, rsenc uses
a shortened Reed-Solomon code. Parity symbols are at the end of each
word in the output Galois array code.

code = rsenc(msg,n,k,genpoly) is the same as the syntax above,
except that a nonempty value of genpoly specifies the generator
polynomial for the code. In this case, genpoly is a Galois row vector that
lists the coefficients, in order of descending powers, of the generator
polynomial. The generator polynomial must have degree n-k. To use
the default narrow-sense generator polynomial, set genpoly to [].

code = rsenc(...,paritypos) specifies whether rsenc appends or
prepends the parity symbols to the input message to form code. The
string paritypos can be either 'end' or 'beginning'. The default is
'end'.

Examples The example below encodes two message words using a (7,3)
Reed-Solomon encoder.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6],m); % Two rows of m-bit symbols
code = rsenc(msg,n,k)

The output is below.

code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
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Array elements =

2 7 3 3 6 7 6
4 0 6 4 2 2 0

For additional examples, see “Representing Words for Reed-Solomon
Codes” and “Creating and Decoding Reed-Solomon Codes”.

Limitations n and k must differ by an even integer. n must be between 3 and 65535.

See Also rsdec, gf, rsgenpoly, “Block Coding”
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Purpose Encode ASCII file using Reed-Solomon code

Syntax rsencof(file_in,file_out); rsencof(file_in,file_out,err_cor);

Description rsencof(file_in,file_out) encodes the ASCII file file_in using
(127, 117) Reed-Solomon code. The error-correction capability of this
code is 5 for each block of 127 codeword characters. This function writes
the encoded text to the file file_out. Both file_in and file_out are
string variables.

rsencof(file_in,file_out,err_cor) is the same as the first
syntax, except that err_cor specifies the error-correction capability
for each block of 127 codeword characters. The message length is
127 - 2 * err_cor.

Note If the number of characters in file_in is not an integer multiple
of 127 - 2 * err_cor, the function appends char(4) symbols to file_out.

Examples The file matlabroot/toolbox/comm/comm/oct2dec.m contains text
help for the oct2dec function in this toolbox. The commands below
encode the file using rsencof and then decode it using rsdecof.

file_in = [matlabroot '/toolbox/comm/comm/oct2dec.m'];
file_out = 'encodedfile'; % Or use another filename
rsencof(file_in,file_out) % Encode the file.

file_in = file_out;
file_out = 'decodedfile'; % Or use another filename
rsdecof(file_in,file_out) % Decode the file.

To see the original file and the decoded file in the MATLAB workspace,
use the commands below (or similar ones if you modified the filenames
above).

type oct2dec.m
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type decodedfile

See Also rsdecof, “Block Coding”
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Purpose Generator polynomial of Reed-Solomon code

Syntax genpoly = rsgenpoly(n,k)
genpoly = rsgenpoly(n,k,prim_poly)
genpoly = rsgenpoly(n,k,prim_poly,b)
[genpoly,t] = rsgenpoly(...)

Description genpoly = rsgenpoly(n,k) returns the narrow-sense generator
polynomial of a Reed-Solomon code with codeword length n and
message length k. The codeword length n must have the form 2m-1
for some integer m, and n-k must be an even integer. The output
genpoly is a Galois row vector that represents the coefficients of the
generator polynomial in order of descending powers. The narrow-sense
generator polynomial is (X - A1)(X - A2)...(X - A2t) where A is a root of
the default primitive polynomial for the field GF(n+1) and t is the code’s
error-correction capability, (n-k)/2.

genpoly = rsgenpoly(n,k,prim_poly) is the same as the syntax
above, except that prim_poly specifies the primitive polynomial for
GF(n+1) that has A as a root. prim_poly is an integer whose binary
representation indicates the coefficients of the primitive polynomial. To
use the default primitive polynomial GF(n+1), set prim_poly to [].

genpoly = rsgenpoly(n,k,prim_poly,b) returns the generator
polynomial (X - Ab)(X - Ab+1)...(X - Ab+2t-1), where b is an integer, A is
a root of prim_poly, and t is the code’s error-correction capability,
(n-k)/2.

[genpoly,t] = rsgenpoly(...) returns t, the error-correction
capability of the code.

Examples The examples below create Galois row vectors that represent generator
polynomials for a [7,3] Reed-Solomon code. The vectors g and g2 both
represent the narrow-sense generator polynomial, but with respect to
different primitive elements A. More specifically, g2 is defined such that
A is a root of the primitive polynomial D3 + D2 + 1 for GF(8), not of
the default primitive polynomial D3 + D + 1. The vector g3 represents

2-514



rsgenpoly

the generator polynomial (X - A3)(X - A4)(X - A5)(X - A6), where A is a
root of D3 + D2 + 1 in GF(8).

g = rsgenpoly(7,3)
g2 = rsgenpoly(7,3,13) % Use nondefault primitive polynomial.
g3 = rsgenpoly(7,3,13,3) % Use b = 3.

The output is below.

g = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1 3 1 2 3

g2 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

1 4 5 1 5

g3 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

1 7 1 6 7

As another example, the command below shows that the default
narrow-sense generator polynomial for a [15,11] Reed-Solomon code is
X4 + (A3 + A2 + 1)X3 + (A3 + A2)X2 + A3X + (A2 + A + 1), where A is a root
of the default primitive polynomial for GF(16).

gp = rsgenpoly(15,11)
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gp = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 13 12 8 7

For additional examples, see “Parameters for Reed-Solomon Codes”.

Limitations n and k must differ by an even integer. The maximum allowable value
of n is 65535.

See Also gf, rsenc, rsdec, “Block Coding”
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Purpose Generate scatter plot

Syntax scatterplot(x)
scatterplot(x,n)
scatterplot(x,n,offset)
scatterplot(x,n,offset,plotstring)
scatterplot(x,n,offset,plotstring,h)
h = scatterplot(...)

Description scatterplot(x) produces a scatter plot for the signal x. The
interpretation of x depends on its shape and complexity:

• If x is a real two-column matrix, scatterplot interprets the first
column as in-phase components and the second column as quadrature
components.

• If x is a complex vector, scatterplot interprets the real part
as in-phase components and the imaginary part as quadrature
components.

• If x is a real vector, scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the
function plots every nth value of the signal, starting from the first value.
That is, the function decimates x by a factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except that
the function plots every nth value of the signal, starting from the
(offset+1)st value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax
above, except that plotstring determines the plotting symbol, line
type, and color for the plot. plotstring is a string whose format and
meaning are the same as in the plot function.

scatterplot(x,n,offset,plotstring,h) is the same as the syntax
above, except that the scatter plot is in the figure whose handle is
h, rather than a new figure. h must be a handle to a figure that
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scatterplot previously generated. To plot multiple signals in the same
figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except that
h is the handle to the figure that contains the scatter plot.

Examples See “Example: Scatter Plots” or the example on the reference page for
qamdemod. Both examples illustrate how to plot multiple signals in a
single scatter plot.

For an online demonstration, type showdemo scattereyedemo.

See Also eyediagram, plot, scattereyedemo, scatter, “Scatter Plots”
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Purpose Calculate bit error rate (BER) using semianalytic technique

Syntax ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo)
ber =
semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)
[ber,avgampl,avgpower] = semianalytic(...)

Graphical
Interface

As an alternative to the semianalytic function, invoke the BERTool
GUI (bertool) and use the Semianalytic tab.

Description ber = semianalytic(txsig,rxsig,modtype,M,Nsamp) returns the
bit error rate (BER) of a system that transmits the complex baseband
vector signal txsig and receives the noiseless complex baseband vector
signal rxsig. Each of these signals has Nsamp samples per symbol.
Nsamp is also the sampling rate of txsig and rxsig, in Hz. The function
assumes that rxsig is the input to the receiver filter, and the function
filters rxsig with an ideal integrator. modtype is the modulation type
of the signal and M is the alphabet size. The table below lists the valid
values for modtype and M.

Modulation
Scheme

Value of modtype Valid Values of M

Differential phase
shift keying (DPSK)

'dpsk' 2, 4

Minimum shift
keying (MSK) with
differential encoding

'msk/diff' 2

Minimum shift
keying (MSK) with
nondifferential
encoding

'msk/nondiff' 2
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Modulation
Scheme

Value of modtype Valid Values of M

Phase shift
keying (PSK)
with differential
encoding, where the
phase offset of the
constellation is 0

'psk/diff' 2, 4

Phase shift
keying (PSK) with
nondifferential
encoding, where the
phase offset of the
constellation is 0

'psk/nondiff' 2, 4, 8, 16, 32, or 64

Offset quaternary
phase shift keying
(OQPSK)

'oqpsk' 4

Quadrature
amplitude
modulation (QAM)

'qam' 4, 8, 16, 32, 64, 128,
256, 512, 1024

'msk/diff' is equivalent to conventional MSK (setting the 'Precoding'
property of the MSK object to 'off'), while 'msk/nondiff' is
equivalent to precoded MSK (setting the 'Precoding' property of the
MSK object to 'on').

Note The output ber is an upper bound on the BER in these cases:

• DQPSK (modtype = 'dpsk', M = 4)

• Cross QAM (modtype = 'qam', M not a perfect square). In this case,
note that the upper bound used here is slightly tighter than the
upper bound used for cross QAM in the berawgn function.

2-520



semianalytic

When the function computes the BER, it assumes that symbols are
Gray-coded. The function calculates the BER for values of Eb/N0 in the
range of [0:20] dB and returns a vector of length 21 whose elements
correspond to the different Eb/N0 levels.

Note You must use a sufficiently long vector txsig, or else the
calculated BER will be inaccurate. If the system’s impulse response is
L symbols long, the length of txsig should be at least ML. A common
approach is to start with an augmented binary pseudonoise (PN)
sequence of total length (log2M)M

L. An augmented PN sequence is a PN
sequence with an extra zero appended, which makes the distribution of
ones and zeros equal.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
is the same as the previous syntax, except that the function filters
rxsig with a receiver filter instead of an ideal integrator. The transfer
function of the receiver filter is given in descending powers of z by the
vectors num and den.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo) is the
same as the first syntax, except that EbNo represents Eb/N0, the ratio
of bit energy to noise power spectral density, in dB. If EbNo is a vector,
then the output ber is a vector of the same size, whose elements
correspond to the different Eb/N0 levels.

ber =
semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)
combines the functionality of the previous two syntaxes.

[ber,avgampl,avgpower] = semianalytic(...) returns the mean
complex signal amplitude and the mean power of rxsig after filtering it
by the receiver filter and sampling it at the symbol rate.

Examples A typical procedure for implementing the semianalytic technique is
in “Procedure for the Semianalytic Technique”. Sample code is in
“Example: Using the Semianalytic Technique”.
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Limitations The function makes several important assumptions about the
communication system. See “When to Use the Semianalytic Technique”
to find out whether your communication system is suitable for the
semianalytic technique and the semianalytic function.

See Also noisebw, qfunc, “Performance Results via the Semianalytic Technique”

References [1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of
Communication Systems, New York, Plenum Press, 1992.

[2] Pasupathy, S., “Minimum Shift Keying: A Spectrally Efficient
Modulation,” IEEE Communications Magazine, July, 1979, pp. 14–22.
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Purpose Sequence generator package

Syntax h = seqgen.type(...)

Description h = seqgen.type(...) returns a sequence generator object, h, of a
particular type (e.g., h = seqgen.pn).

Sequence generator objects have sets of properties and methods based
on their type. A method common to all seqgen object types is generate,
which is used to generate the specific sequence type.

Type help seqgen/types to get the complete listing of types.

Each seqgen object is equipped with additional type-specific functions
for simulation. Type help seqgen.<type> (e.g., help seqgen.pn) to
get the complete help on the specific type.

Example h = seqgen.pn; % construct PN Sequence Generator object

See Also seqgen.pn
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Purpose Construct default PN sequence generator object

Syntax h = seqgen.pn
h = seqgen.pn(property1,value1,...)

Description h = seqgen.pn constructs a default PN sequence generator object h,
and is equivalent to the following:

H = SEQGEN.PN('GenPoly', [1 0 0 0 0 1 1], ...
'InitialStates', [0 0 0 0 0 1], ...
'CurrentStates', [0 0 0 0 0 1], ...
'Mask', [0 0 0 0 0 1], ...
'NumBitsOut', 1)

or

H = SEQGEN.PN('GenPoly', [1 0 0 0 0 1 1], ...
'InitialStates', [0 0 0 0 0 1], ...
'CurrentStates', [0 0 0 0 0 1], ...
'Shift', 0, ...
'NumBitsOut', 1)

h = seqgen.pn(property1,value1,...) constructs a PN sequence
generator object h with properties as specified by pairs of properties
and values.

Methods PN sequence generator objects have the following methods.

Method Result

generate Generate [NumBitsOut x 1] PN
sequence generator values.

reset Set the 'CurrentStates' values
to the 'IntialStates' values.
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Method Result

getshift Get the actual or equivalent
'Shift' property value.

getmask Get the actual or equivalent
'Mask' property value.

The following code shows how to get the 'Shift' or 'Mask' property
values:

h = seqgen.pn('Shift', 0);
maskBits = getmask(h)
shiftVal = getshift(h)

Properties PN sequence generator objects have the following properties.

Property Description

GenPoly Generator polynomial vector
array of bits; must be descending
order

InitialStates Vector array (with length of the
general polynomial order) of
initial shift register values (in
bits)

CurrentStates Vector array (with length of the
general polynomial order) of
present shift register values (in
bits)
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Property Description

NumBitsOut Number of bits to output at each
generate method invocation

Mask or Shift A mask vector of binary 0 and 1
values is used to specify which
shift register state bits are XORed
to produce the resulting output
bit value.

Alternatively, a scalar shift
value may be used to specify an
equivalent shift (either a delay or
advance) in the output sequence.

seqgen.pn objects also have either a 'Mask' (vector of mask bits) or
'Shift' (scalar shift value) property.

The 'GenPoly' property values specify the shift register connections.
Enter these values as either a binary vector or a vector of exponents of
the nonzero terms of the generator polynomial in descending order of
powers. For the binary vector representation, the first and last elements
of the vector must be 1. For the descending-ordered polynomial
representation, the last element of the vector must be 0. For more
information and examples, see “LFSR SSRG Details” on page 2-527.

Side
Effects of
Setting
Certain
Properties

Setting the GenPoly Property

Every time this property is set, it will reset the entire object. In
addition to changing the polynomial values, 'CurrentStates',
'InitialStates', and 'Mask' will be set to their default values
('NumBitsOut' will remain the same), and no warnings will be issued.

Setting the InitialStates Property

Every time this property is set, it will also set 'CurrentStates' to
the new 'InitialStates' setting.
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LFSR SSRG
Details

The generate method produces a pseudorandom noise (PN) sequence
using a linear feedback shift register (LFSR). The LFSR is implemented
using a simple shift register generator (SSRG, or Fibonacci)
configuration, as shown below.
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All r registers in the generator update their values at each time step
according to the value of the incoming arrow to the shift register. The
adders perform addition modulo 2. The shift register is described by
the 'GenPoly' property (generator polynomial), which is a primitive
binary polynomial in z, grzr+gr-1zr-1+gr-2zr-2+...+g0. The coefficient gk is 1
if there is a connection from the kth register, as labeled in the preceding
diagram, to the adder. The leading term gr and the constant term g0
of the 'GenPoly' property must be 1 because the polynomial must be
primitive.

You can specify the Generator polynomial parameter using either of
these formats:
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• A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.

The Initial states parameter is a vector specifying the initial values of
the registers. The Initial states parameter must satisfy these criteria:

• All elements of the Initial states vector must be binary numbers.

• The length of the Initial states vector must equal the degree of the
generator polynomial.

Note At least one element of the Initial states vector must be
nonzero in order for the block to generate a nonzero sequence. That
is, the initial state of at least one of the registers must be nonzero.

For example, the following table indicates two sets of parameter values
that correspond to a generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2

Generator
polynomial

g1 = [1 0 0 0 0 0 1 0
1]

g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial
states

[1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]
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Output mask vector (or scalar shift value) shifts the starting point
of the output sequence. With the default setting for this parameter, the
only connection is along the arrow labeled m0, which corresponds to a
shift of 0. The parameter is described in greater detail below.

You can shift the starting point of the PN sequence with Output mask
vector (or scalar shift value). You can specify the parameter in
either of two ways:

• An integer representing the length of the shift

• A binary vector, called the mask vector, whose length is equal to the
degree of the generator polynomial

The difference between the block’s output when you set Output mask
vector (or scalar shift value) to 0, versus a positive integer d, is
shown in the following table.

T = 0 T = 1 T = 2 ... T = d
T =
d+1

Shift = 0 x0 x1 x2 ... xd xd+1
Shift = d xd xd+1 xd+2 ... x2d x2d+1

Alternatively, you can set Output mask vector (or scalar shift
value) to a binary vector, corresponding to a polynomial in z, mr-1zr-1
+ mr-2zr-2 + ... + m1z + m0, of degree at most r-1. The mask vector
corresponding to a shift of d is the vector that represents m(z) = zd
modulo g(z), where g(z) is the generator polynomial. For example,
if the degree of the generator polynomial is 4, then the mask vector
corresponding to d = 2 is [0 1 0 0], which represents the polynomial
m(z) = z2. The preceding schematic diagram shows how Output mask
vector (or scalar shift value) is implemented when you specify it
as a mask vector. The default setting for Output mask vector (or
scalar shift value) is 0. You can calculate the mask vector using the
Communications Toolbox function shift2mask.

2-529



seqgen.pn

Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length
for a fixed degree, r, of the generator polynomial, you can set
Generator polynomial to a value from the following table. See for
more information about the shift-register configurations that these
polynomials represent.

r
Generator
Polynomial r Generator Polynomial

2 [2 1 0] 21 [21 19 0]

3 [3 2 0] 22 [22 21 0]

4 [4 3 0] 23 [23 18 0]

5 [5 3 0] 24 [24 23 22 17 0]

6 [6 5 0] 25 [25 22 0]

7 [7 6 0] 26 [26 25 24 20 0]

8 [8 6 5 4 0] 27 [27 26 25 22 0]

9 [9 5 0] 28 [28 25 0]

10 [10 7 0] 29 [29 27 0]

11 [11 9 0] 30 [30 29 28 7 0]

12 [12 11 8 6 0] 31 [31 28 0]

13 [13 12 10 9 0] 32 [32 31 30 10 0]

14 [14 13 8 4 0] 33 [33 20 0]

15 [15 14 0] 34 [34 15 14 1 0]

16 [16 15 13 4 0] 35 [35 2 0]

17 [17 14 0] 36 [36 11 0]

18 [18 11 0] 37 [37 12 10 2 0]
19 [19 18 17 14 0] 38 [38 6 5 1 0]
20 [20 17 0] 39 [39 8 0]
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r
Generator
Polynomial r Generator Polynomial

40 [40 5 4 3 0] 47 [47 14 0]
41 [41 3 0] 48 [48 28 27 1 0]
42 [42 23 22 1 0] 49 [49 9 0]
43 [43 6 4 3 0] 50 [50 4 3 2 0]
44 [44 6 5 2 0] 51 [51 6 3 1 0]
45 [45 4 3 1 0] 52 [52 3 0]
46 [46 21 10 1 0] 53 [53 6 2 1 0]

Examples Setting up the PN Sequence Generator

This figure defines a PN sequence generator with a generator
polynomial p(z) = z 6 + z + 1. You can set up the PN sequence generator
by typing the following at the MATLAB command line:

h = seqgen.pn('GenPoly', [1 0 0 0 0 1 1], 'MaskOrShift', [1
1 0 1 0 1])

Alternatively, you can input GenPoly as the exponents of z for the
nonzero terms of the polynomial in descending order of powers:
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h = seqgen.pn('GenPoly', [6 1 0], 'MaskOrShift', [1 1 0 1 0
1])

General Use of seqgen.pn

The following is an example of typical usage:

% Construct a PN object
h = seqgen.pn('Shift', 0);

% Output 10 PN bits
set(h, 'NumBitsOut', 10);
generate(h)

% Output 10 more PN bits
generate(h)

% Reset (to the initial shift register state values)
reset(h);

% Output 4 PN bits
set(h, 'NumBitsOut', 4);
generate(h)

Behavior of a Copied seqgen.pn Object

When a seqgen.pn object is copied, its states are also copied. The
subsequent outputs, therefore, from the copied object are likely to be
different from the initial outputs from the original object. The following
code illustrates this behavior:

h = seqgen.pn('Shift', 0);
set(h, 'NumBitsOut', 5);
generate(h)

h generates the sequence:

1
0
0
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0
0

However, if h is copied to g, and g is made to generate a sequence:

g=copy(h);
generate(g)

the generated sequence is different from that initially generated from h:

0
1
0
0
0

This difference ocurrs because the state of h having generated 5 bits
was copied to g. If g is reset:

reset(g);
generate(g)

then it generates the same sequence that h did:

1
0
0
0
0

See Also mask2shift, seqgen, shift2mask
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Purpose Convert shift to mask vector for shift register configuration

Syntax mask = shift2mask(prpoly,shift)

Description mask = shift2mask(prpoly,shift) returns the mask that is
equivalent to the shift (or offset) specified by shift, for a linear
feedback shift register whose connections are specified by the primitive
polynomial prpoly. The prpoly input can have one of these formats:

• A binary vector that lists the coefficients of the primitive polynomial
in order of descending powers

• An integer scalar whose binary representation gives the coefficients
of the primitive polynomial, where the least significant bit is the
constant term

The shift input is an integer scalar.

Note To save time, shift2mask does not check that prpoly is
primitive. If it is not primitive, the output is not meaningful. To find
primitive polynomials, use primpoly or see [2].

Definition of Equivalent Mask

The equivalent mask for the shift s is the remainder after dividing
the polynomial xs by the primitive polynomial. The vector mask
represents the remainder polynomial by listing the coefficients in order
of descending powers.

Shifts, Masks, and Pseudonoise Sequence Generators

Linear feedback shift registers are part of an implementation of a
pseudonoise sequence generator. Below is a schematic diagram of a
pseudonoise sequence generator. All adders perform addition modulo 2.
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m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

The primitive polynomial determines the state of each switch labeled
gk, and the mask determines the state of each switch labeled mk. The
lower half of the diagram shows the implementation of the shift, which
delays the starting point of the output sequence. If the shift is zero, the
m0 switch is closed while all other mk switches are open. The table
below indicates how the shift affects the shift register’s output.

T = 0 T = 1 T = 2 ... T = s T = s+1

Shift =
0

x0 x1 x2 ... xs xs+1

Shift =
s > 0

xs xs+1 xs+2 ... x2s x2s+1

If you have Communications Blockset software and want to generate a
pseudonoise sequence in a Simulink® model, see the reference page for
the PN Sequence Generator block in the blockset’s documentation set.
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Examples The command below converts a shift of 5 into the equivalent mask
x3 +x + 1, for the linear feedback shift register whose connections are
specified by the primitive polynomial x4 + x3 + 1.

mk = shift2mask([1 1 0 0 1],5)

mk =

1 0 1 1

See Also mask2shift, deconv, isprimitive, primpoly

References [1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook,
Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum
Communications Handbook, New York, McGraw-Hill, 1994.
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Purpose Construct signed least mean square (LMS) adaptive algorithm object

Syntax alg = signlms(stepsize)
alg = signlms(stepsize,algtype)

Description The signlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

alg = signlms(stepsize) constructs an adaptive algorithm object
based on the signed least mean square (LMS) algorithm with a step
size of stepsize.

alg = signlms(stepsize,algtype) constructs an adaptive algorithm
object of type algtype from the family of signed LMS algorithms. The
table below lists the possible values of algtype.

Value of algtype Type of Signed LMS Algorithm

'Sign LMS' Sign LMS (default)
'Signed Regressor LMS' Signed regressor LMS
'Sign Sign LMS' Sign-sign LMS

Properties

The table below describes the properties of the signed LMS adaptive
algorithm object. To learn how to view or change the values of an
adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm”.
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Property Description

AlgType Type of signed LMS algorithm,
corresponding to the algtype
input argument. You cannot
change the value of this property
after creating the object.

StepSize LMS step size parameter, a
nonnegative real number

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all weights wi and define
u as the vector of all inputs ui. Based on the current set of weights, w,
this adaptive algorithm creates the new set of weights given by

• (LeakageFactor) w + (StepSize) u*sgn(Re(e)), for sign LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) Re(e), for signed
regressor LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) sgn(Re(e)), for
sign-sign LMS

where the * operator denotes the complex conjugate and sgn denotes
the signum function (sign in MATLAB technical computing software).

See Also lms, normlms, varlms, rls, cma, lineareq, dfe, equalize, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, John Wiley & Sons, 1998.
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[2] Kurzweil, J., An Introduction to Digital Communications, New York,
John Wiley & Sons, 2000.
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Purpose Single sideband amplitude demodulation

Syntax z = ssbdemod(y,Fc,Fs)
z = ssbdemod(y,Fc,Fs,ini_phase)
z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

Description For All Syntaxes

z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude
modulated signal y from the carrier signal having frequency Fc (Hz).
The carrier signal and y have sampling rate Fs (Hz). The modulated
signal has zero initial phase, and can be an upper- or lower-sideband
signal. The demodulation process uses the lowpass filter specified by
[num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW
is the bandwidth of the original signal that was modulated.

z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

z = ssbdemod(y,Fc,Fs,ini_phase,num,den) specifies the numerator
and denominator of the lowpass filter used in the demodulation.

Examples The code below shows that ssbdemod can demodulate an upper-sideband
or lower-sideband signal.

Fc = 12000; Fs = 270000;

t = [0:1/Fs:0.01]';

s = sin(2*pi*300*t)+2*sin(2*pi*600*t);

y1 = ssbmod(s,Fc,Fs,0); % Lower-sideband modulated signal

y2 = ssbmod(s,Fc,Fs,0,'upper'); % Upper-sideband modulated signal

s1 = ssbdemod(y1,Fc,Fs); % Demodulate lower sideband

s2 = ssbdemod(y2,Fc,Fs); % Demodulate upper sideband

% Plot results to show that the curves overlap.

figure; plot(t,s1,'r-',t,s2,'k--');
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legend('Demodulation of upper sideband','Demodulation of lower sideband')

See Also ssbmod, amdemod, “Modulation”
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Purpose Single sideband amplitude modulation

Syntax y = ssbmod(x,Fc,Fs)
y = ssbmod(x,Fc,Fs,ini_phase)
y = ssbmod(x,fc,fs,ini_phase,'upper')

Description y = ssbmod(x,Fc,Fs) uses the message signal x to modulate a
carrier signal with frequency Fc (Hz) using single sideband amplitude
modulation in which the lower sideband is the desired sideband. The
carrier signal and x have sample frequency Fs (Hz). The modulated
signal has zero initial phase.

y = ssbmod(x,Fc,Fs,ini_phase) specifies the initial phase of the
modulated signal in radians.

y = ssbmod(x,fc,fs,ini_phase,'upper') uses the upper sideband
as the desired sideband.

Examples An example using ssbmod is on the reference page for ammod.

See Also ssbdemod, ammod, “Modulation”
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Purpose Construct channel object from set of standardized channel models

Syntax chan = stdchan(ts,fd,chantype)
[chan, chanprofile] = stdchan(...)

Description chan = stdchan(ts,fd,chantype) constructs a fading channel object
chan according to the specified chantype. The input string chantype is
chosen from the set of standardized channel profiles listed below. ts
is the sample time of the input signal, in seconds. fd is the maximum
Doppler shift, in Hertz.

[chan, chanprofile] = stdchan(...) also returns a structure
chanprofile containing the parameters of the channel profile specified
by chantype.

Channel
Models

COST 207 channel models (The Rician K factors for the cases
cost207RAx4 and cost207RAx6 are chosen as in 3GPP TS 45.005 V7.9.0
(2007-2)):

Channel model Profile

cost207RAx4 Rural Area (RAx), 4 taps
cost207RAx6 Rural Area (RAx), 6 taps
cost207TUx6 Typical Urban (TUx), 6 taps
cost207TUx6alt Typical Urban (TUx), 6 taps,

alternative
cost207TUx12 Typical Urban (TUx), 12 taps
cost207TUx12alt Typical Urban (TUx), 12 taps,

alternative
cost207BUx6 Bad Urban (BUx), 6 taps

cost207BUx6alt Bad Urban (BUx), 6 taps,
alternative

cost207BUx12 Bad Urban (BUx), 12 taps
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Channel model Profile

cost207BUx12alt Bad Urban (BUx), 12 taps,
alternative

cost207HTx6 Hilly Terrain (HTx), 6 taps
cost207HTx6alt Hilly Terrain (HTx), 6 taps,

alternative
cost207HTx12 Hilly Terrain (HTx), 12 taps
cost207HTx12alt Hilly Terrain (HTx), 12 taps,

alternative

GSM/EDGE channel models (3GPP TS 45.005 V7.9.0 (2007-2), 3GPP
TS 05.05 V8.20.0 (2005-11)):

Channel model Profile

gsmRAx6c1 Typical case for rural area (RAx),
6 taps, case 1

gsmRAx4c2 Typical case for rural area (RAx),
4 taps, case 2

gsmHTx12c1 Typical case for hilly terrain
(HTx), 12 taps, case 1

gsmHTx12c2 Typical case for hilly terrain
(HTx), 12 taps, case 2

gsmHTx6c1 Typical case for hilly terrain
(HTx), 6 taps, case 1

gsmHTx6c2 Typical case for hilly terrain
(HTx), 6 taps, case 2

gsmTUx12c1 Typical case for urban area (TUx),
12 taps, case 1

gsmTUx12c1 Typical case for urban area (TUx),
12 taps, case 2
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Channel model Profile

gsmTUx6c1 Typical case for urban area (TUx),
6 taps, case 1

gsmTUx6c2 Typical case for urban area (TUx),
6 taps, case 2

gsmEQx6 Profile for equalization test (EQx),
6 taps

gsmTIx2 Typical case for very small cells
(TIx), 2 taps

3GPP channel models for deployment evaluation (3GPP TR 25.943
V6.0.0 (2004-12)):

Channel model Profile

3gppTUx Typical Urban channel model
(TUx)

3gppRAx Rural Area channel model (RAx)
3gppHTx Hilly Terrain channel model

(HTx)

ITU-R 3G channel models (ITU-R M.1225 (1997-2)):

Channel model Profile

itur3GIAx Indoor office, channel A
itur3GIBx Indoor office, channel B
itur3GPAx Outdoor to indoor and pedestrian,

channel A
itur3GPBx Outdoor to indoor and pedestrian,

channel B
itur3GVAx Vehicular - high antenna, channel

A
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Channel model Profile

itur3GVBx Vehicular - high antenna, channel
B

itur3GSAxLOS Satellite, channel A, LOS

itur3GSAxNLOS Satellite, channel A, NLOS
itur3GSBxLOS Satellite, channel B, LOS

itur3GSBxNLOS Satellite, channel B, NLOS
itur3GSCxLOS Satellite, channel C, LOS

itur3GSCxNLOS Satellite, channel C, NLOS

ITU-R HF channel models (ITU-R F.1487 (2000)) (FD must be 1 to
obtain the correct frequency spreads for these models.):

Channel model Profile

iturHFLQ Low latitudes, Quiet conditions
iturHFLM Low latitudes, Moderate

conditions
iturHFLD Low latitudes, Disturbed

conditions
iturHFMQ Medium latitudes, Quiet

conditions
iturHFMM Medium latitudes, Moderate

conditions
iturHFMD Medium latitudes, Disturbed

conditions
iturHFMDV Medium latitudes, Disturbed

conditions near vertical incidence
iturHFHQ High latitudes, Quiet conditions
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Channel model Profile

iturHFHM High latitudes, Moderate
conditions

iturHFHD High latitudes, Disturbed
conditions

JTC channel models:

Channel model Profile

jtcInResA Indoor residential A
jtcInResB Indoor residential B
jtcInResC Indoor residential C

jtcInOffA Indoor office A
jtcInOffB Indoor office B
jtcInOffC Indoor office C
jtcInComA Indoor commercial A

jtcInComB Indoor commercial B
jtcInComC Indoor commercial C

jtcOutUrbHRLAA Outdoor urban high-rise areas -
Low antenna A

jtcOutUrbHRLAB Outdoor urban high-rise areas -
Low antenna B

jtcOutUrbHRLAC Outdoor urban high-rise areas -
Low antenna C

jtcOutUrbLRLAA Outdoor urban low-rise areas -
Low antenna A
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Channel model Profile

jtcOutUrbLRLAB Outdoor urban low-rise areas -
Low antenna B

jtcOutUrbLRLAC Outdoor urban low-rise areas -
Low antenna C

jtcOutResLAA Outdoor residential areas - Low
antenna A

jtcOutResLAB Outdoor residential areas - Low
antenna B

jtcOutResLAC Outdoor residential areas - Low
antenna C

jtcOutUrbHRHAA Outdoor urban high-rise areas -
High antenna A

jtcOutUrbHRHAB Outdoor urban high-rise areas -
High antenna B

jtcOutUrbHRHAC Outdoor urban high-rise areas -
High antenna C

jtcOutUrbLRHAA Outdoor urban low-rise areas -
High antenna A

jtcOutUrbLRHAB Outdoor urban low-rise areas -
High antenna B

jtcOutUrbLRHAC Outdoor urban low-rise areas -
High antenna C

jtcOutResHAA Outdoor residential areas - High
antenna A

jtcOutResHAB Outdoor residential areas - High
antenna B

jtcOutResHAC Outdoor residential areas - High
antenna C
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HIPERLAN/2 channel models:

Channel model Profile

hiperlan2A Model A
hiperlan2B Model B
hiperlan2C Model C

hiperlan2D Model D
hiperlan2E Model E

802.11a/b/g channel models:

802.11a/b/g channel models share a common multipath delay profile

Note TS should not be larger than TRMS/2, as per 802.11
specifications.

Channel model

802.11a

802.11b

802.11g

Example ts = 0.1e-4; fd = 200;
chan = stdchan(ts, fd, 'cost207TUx6');
chan.NormalizePathGains = 1;
chan.StoreHistory = 1;
y = filter(chan, ones(1,5e4));
plot(chan);

See Also doppler, rayleighchan, and ricianchan
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Purpose Compute number of symbol errors and symbol error rate

Syntax [number,ratio] = symerr(x,y)
[number,ratio] = symerr(x,y,flg)
[number,ratio,loc] = symerr(...)

Description For All Syntaxes

The symerr function compares binary representations of elements in x
with those in y. The schematics below illustrate how the shapes of x
and y determine which elements symerr compares.
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The output number is a scalar or vector that indicates the number of
elements that differ. The size of number is determined by the optional
input flg and by the dimensions of x and y. The output ratio equals
number divided by the total number of elements in the smaller input.

For Specific Syntaxes

[number,ratio] = symerr(x,y) compares the elements in x and y.
The sizes of x and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then symerr
compares x and y element by element. number is a scalar. See
schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a
two-dimensional matrix, then symerr compares the vector element
by element with each row (resp., column) of the matrix. The length
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of the vector must equal the number of columns (resp., rows) in the
matrix. number is a column (resp., row) vector whose mth entry
indicates the number of elements that differ when comparing the
vector with the mth row (resp., column) of the matrix. See schematics
(b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous
syntax, except that flg can override the defaults that govern which
elements symerr compares and how symerr computes the outputs.
The values of flg are 'overall', 'column-wise', and 'row-wise'.
The table below describes the differences that result from various
combinations of inputs. In all cases, ratio is number divided by the
total number of elements in y.

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of
Comparison

number

'overall'
(default)

Element by
element

Total number of
symbol errors

'column-wise' mth column of x
vs. mth column
of y

Row vector
whose entries
count symbol
errors in each
column

Two-dim.
matrix

'row-wise' mth row of x vs.
mth row of y

Column vector
whose entries
count symbol
errors in each
row
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Comparing a Two-Dimensional Matrix x with Another Input
y (Continued)

Shape of y flg Type of
Comparison

number

'overall' y vs. each
column of x

Total number of
symbol errors

Column vector

'column-wise'
(default)

y vs. each
column of x

Row vector
whose entries
count symbol
errors in each
column of x

'overall' y vs. each row
of x

Total number of
symbol errors

Row vector

'row-wise'
(default)

y vs. each row
of x

Column vector
whose entries
count symbol
errors in each
row of x

[number,ratio,loc] = symerr(...) returns a binary matrix loc that
indicates which elements of x and y differ. An element of loc is zero if
the corresponding comparison yields no discrepancy, and one otherwise.

Examples On the reference page for biterr, the last example uses symerr.

The command below illustrates how symerr works when one argument
is a vector and the other is a matrix. It compares the vector [1,2,3]'
to the columns
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of the matrix.

num = symerr([1 2 3]',[1 1 3 1;3 2 2 2; 3 3 8 3])

num =

1 0 2 0

As another example, the command below illustrates the use of flg to
override the default row-by-row comparison. Notice that number and
ratio are scalars.

format rat;
[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

The output is below.

number =

3

ratio =

3/4

loc =

0 1
1 1

See Also biterr, “Performance Results via Simulation”
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Purpose Produce syndrome decoding table

Syntax t = syndtable(h)

Description t = syndtable(h) returns a decoding table for an error-correcting
binary code having codeword length n and message length k. h
is an (n-k)-by-n parity-check matrix for the code. t is a 2n-k-by-n
binary matrix. The rth row of t is an error pattern for a received
binary codeword whose syndrome has decimal integer value r-1. (The
syndrome of a received codeword is its product with the transpose of the
parity-check matrix.) In other words, the rows of t represent the coset
leaders from the code’s standard array.

When converting between binary and decimal values, the leftmost
column is interpreted as the most significant digit. This differs from the
default convention in the bi2de and de2bi commands.

Examples An example is in “Decoding Table”.

See Also decode, hammgen, gfcosets, “Block Coding”

References [1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for
Digital Communications, New York, Plenum, 1981.
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Purpose Construct variable-step-size least mean square (LMS) adaptive
algorithm object

Syntax alg = varlms(initstep,incstep,minstep,maxstep)

Description The varlms function creates an adaptive algorithm object that you can
use with the lineareq function or dfe function to create an equalizer
object. You can then use the equalizer object with the equalize function
to equalize a signal. To learn more about the process for equalizing a
signal, see “Using Adaptive Equalizer Functions and Objects”.

alg = varlms(initstep,incstep,minstep,maxstep) constructs an
adaptive algorithm object based on the variable-step-size least mean
square (LMS) algorithm. initstep is the initial value of the step size
parameter. incstep is the increment by which the step size changes
from iteration to iteration. minstep and maxstep are the limits between
which the step size can vary.

Properties

The table below describes the properties of the variable-step-size LMS
adaptive algorithm object. To learn how to view or change the values of
an adaptive algorithm object, see “Accessing Properties of an Adaptive
Algorithm”.

Property Description

AlgType Fixed value, 'Variable Step
Size LMS'

LeakageFactor LMS leakage factor, a real
number between 0 and 1. A value
of 1 corresponds to a conventional
weight update algorithm, while
a value of 0 corresponds to a
memoryless update algorithm.

InitStep Initial value of step size when the
algorithm starts
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Property Description

IncStep Increment by which the step
size changes from iteration to
iteration

MinStep Minimum value of step size
MaxStep Maximum value of step size

Also, when you use this adaptive algorithm object to create an equalizer
object (via the lineareq or dfe function), the equalizer object has a
StepSize property. The property value is a vector that lists the current
step size for each weight in the equalizer.

Examples For an example that uses this function, see “Linked Properties of an
Equalizer Object”.

Algorithm Referring to the schematics presented in “Overview of Adaptive
Equalizer Classes”, define w as the vector of all current weights wi and
define u as the vector of all inputs ui. Based on the current step size, μ,
this adaptive algorithm first computes the quantity

μ0 = μ + (IncStep) Re(ggprev)

where g = ue*, gprev is the analogous expression from the previous
iteration, and the * operator denotes the complex conjugate.

Then the new step size is given by

• μ0, if it is between MinStep and MaxStep

• MinStep, if μ0 < MinStep

• MaxStep, if μ0 > MaxStep

The new set of weights is given by

(LeakageFactor) w + 2 μ g*
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See Also lms, signlms, normlms, rls, cma, lineareq, dfe, equalize, “Equalizers”

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.
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Purpose Convert vector into matrix

Syntax mat = vec2mat(vec,matcol)
mat = vec2mat(vec,matcol,padding)
[mat,padded] = vec2mat(...)

Description mat = vec2mat(vec,matcol) converts the vector vec into a matrix
with matcol columns, creating one row at a time. If the length of vec is
not a multiple of matcol, then extra zeros are placed in the last row of
mat. The matrix mat has ceil(length(vec)/matcol) rows.

mat = vec2mat(vec,matcol,padding) is the same as the first syntax,
except that the extra entries placed in the last row of mat are not
necessarily zeros. The extra entries are taken from the matrix padding,
in order. If padding has fewer entries than are needed, then the last
entry is used repeatedly.

[mat,padded] = vec2mat(...) returns an integer padded that
indicates how many extra entries were placed in the last row of mat.

Note vec2mat is similar to the built-in MATLAB function reshape.
However, given a vector input, reshape creates a matrix one column at
a time instead of one row at a time. Also, reshape requires the input
and output matrices to have the same number of entries, whereas
vec2mat places extra entries in the output matrix if necessary.

Examples vec = [1 2 3 4 5];
[mat,padded] = vec2mat(vec,3)
[mat2,padded2] = vec2mat(vec,4)
mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

The output is below.
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mat =

1 2 3
4 5 0

padded =

1

mat2 =

1 2 3 4
5 0 0 0

padded2 =

3

mat3 =

1 2 3 4
5 10 7 4

See Also reshape
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Purpose Convolutionally decode binary data using Viterbi algorithm

Syntax decoded = vitdec(code,trellis,tblen,opmode,dectype)
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decoded = ...

vitdec(code,trellis,tblen,opmode,dectype,puncpat)
decoded = ...

vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat)
decoded = ...

vitdec(...,'cont',...,initmetric,initstates,initinputs)
[decoded,finalmetric,finalstates,finalinputs] = ...

vitdec(...,'cont',...)

Description decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes
the vector code using the Viterbi algorithm. The MATLAB structure
trellis specifies the convolutional encoder that produced code;
the format of trellis is described in “Trellis Description of a
Convolutional Encoder” and the reference page for the istrellis
function. code contains one or more symbols, each of which consists of
log2(trellis.numOutputSymbols) bits. Each symbol in the vector
decoded consists of log2(trellis.numInputSymbols) bits. tblen is a
positive integer scalar that specifies the traceback depth. If the code
rate is 1/2, a typical value for tblen is about five times the constraint
length of the code.

The string opmode indicates the decoder’s operation mode and its
assumptions about the corresponding encoder’s operation. Choices are
in the table below.

2-560



vitdec

Values of opmode Input

Value Meaning

'cont' The encoder is assumed to have started at the
all-zeros state. The decoder traces back from the
state with the best metric. A delay equal to tblen
symbols elapses before the first decoded symbol
appears in the output. This mode is appropriate
when you invoke this function repeatedly and want to
preserve continuity between successive invocations.
See the continuous operation mode syntaxes below.

'term' The encoder is assumed to have both started and
ended at the all-zeros state, which is true for the
default syntax of the convenc function. The decoder
traces back from the all-zeros state. This mode
incurs no delay. This mode is appropriate when the
uncoded message (that is, the input to convenc) has
enough zeros at the end to fill all memory registers
of the encoder. If the encoder has k input streams
and constraint length vector constr (using the
polynomial description of the encoder), “enough”
means k*max(constr-1).

'trunc' The encoder is assumed to have started at the
all-zeros state. The decoder traces back from the
state with the best metric. This mode incurs no
delay. This mode is appropriate when you cannot
assume the encoder ended at the all-zeros state and
when you do not want to preserve continuity between
successive invocations of this function.

The string dectype indicates the type of decision that the decoder
makes, and influences the type of data the decoder expects in code.
Choices are in the table below.
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Values of dectype Input

Value Meaning

'unquant' code contains real input values,
where 1 represents a logical zero
and -1 represents a logical one.

'hard' code contains binary input
values.

'soft' For soft-decision decoding, use the
syntax below. nsdec is required
for soft-decision decoding.

Syntax for Soft Decision Decoding

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decodes the vector code using soft-decision decoding. code consists
of integers between 0 and 2^nsdec-1, where 0 represents the most
confident 0 and 2^nsdec-1 represents the most confident 1. The
existing implementation of the functionality supports up to 13 bits of
quantization, meaning nsdec can be set up to 13. For reference, 3 bits
of quantization is about 2 db better than hard decision decoding.

Syntax for Punctures and Erasures

decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat) denotes the
input punctured code, where puncpat is the puncture pattern vector,
and where 0s indicate punctured bits in the input code.

decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat)
allows an erasure pattern vector, eraspat, to be specified for the input
code, where the 1s indicate the corresponding erasures. eraspat and
code must be of the same length. If puncturing is not used, specify
puncpat to be []. In the eraspat vector, 1s indicate erasures in the
input code.
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Additional Syntaxes for Continuous Operation Mode

Continuous operation mode enables you to save the decoder’s internal
state information for use in a subsequent invocation of this function.
Repeated calls to this function are useful if your data is partitioned into
a series of smaller vectors that you process within a loop, for example.

decoded = ...
vitdec(...,'cont',...,initmetric,initstates,initinputs) is
the same as the earlier syntaxes, except that the decoder starts with
its state metrics, traceback states, and traceback inputs specified
by initmetric, initstates, and initinputs, respectively. Each
real number in initmetric represents the starting state metric
of the corresponding state. initstates and initinputs jointly
specify the initial traceback memory of the decoder; both are
trellis.numStates-by-tblen matrices. initstates consists of
integers between 0 and trellis.numStates-1. If the encoder schematic
has more than one input stream, the shift register that receives the
first input stream provides the least significant bits in initstates,
while the shift register that receives the last input stream provides the
most significant bits in initstates. The vector initinputs consists of
integers between 0 and trellis.numInputSymbols-1. To use default
values for all of the last three arguments, specify them as [],[],[].

[decoded,finalmetric,finalstates,finalinputs] = ...
vitdec(...,'cont',...) is the same as the earlier syntaxes, except
that the final three output arguments return the state metrics,
traceback states, and traceback inputs, respectively, at the end of the
decoding process. finalmetric is a vector with trellis.numStates
elements that correspond to the final state metrics. finalstates and
finalinputs are both matrices of size trellis.numStates-by-tblen.
The elements of finalstates have the same format as those of
initstates.

Examples The example below encodes random data and adds noise. Then it
decodes the noisy code three times to illustrate the three decision types
that vitdec supports. For unquantized and soft decisions, the output
of convenc does not have the same data type that vitdec expects for
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the input code, so it is necessary to manipulate ncode before invoking
vitdec. That the bit error rate computations must account for the delay
that the continuous operation mode incurs.

% Encode data bits
trel = poly2trellis(3,[6 7]); % Define trellis
msg = randi([0 1],1000,1); % Random data
code = convenc(msg,trel); % Encode
tblen = 5; % Traceback length

% Map "0" bit to 1.0 and "1" bit to -1.0. Also add AWGN.
ucode = real(awgn(1-2*code, 3, 'measured'));

% Hard decision decoding using binary inputs
hcode = ucode<0;
decoded1 = vitdec(hcode,trel,tblen,'cont','hard');

% Soft decision decoding with quantized inputs
[x,qcode] = quantiz(ucode,[-.75 -.5 -.25 0 .25 .5 .75],...
7:-1:0); % Values in qcode are between 0 and 2^3-1.
decoded2 = vitdec(qcode',trel,tblen,'cont','soft',3);

% Soft decision decoding using unquantized inputs
decoded3 = vitdec(ucode,trel,tblen,'cont','unquant');

% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
[n1,r1] = biterr(double(decoded1(tblen+1:end)),msg(1:end-tblen));
[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));
[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));
disp(['The bit error rates are: ',num2str([r1 r2 r3])])

The output is similar to the following:

The bit error rates are: 0.064322 0.020101 0.01608
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The example below illustrates how to use the final state and initial state
arguments when invoking vitdec repeatedly. [decoded4;decoded5]
is the same as decoded6.

trel = poly2trellis(3,[6 7]); % Define trellis
tblen = 5; % Traceback length
bitsPerPk = 100; % number of bits per package
SNR = 3;
% Initialize the initial states of the encoder and the decoder to d
encState = []; decMetric = []; decState = []; decInput = [];
totalNumErr = 0; % Inititalize total number of bit errors
% Main loop
for pkCount = 1:10

msg = randi([0 1],bitsPerPk,1); % Generate random data
% Encode starting from encState and save last state
[code encState] = convenc(msg,trel,encState);
% Map "0" bit to 1.0 and "1" bit to -1.0. Also add AWGN.
ucode = real(awgn(1-2*code, SNR, 'measured'));
% Soft decision decoding using unquantized inputs. Start with
% provided state and save the last state of the decoder.
[decoded,decMetric,decState,decInput] = ...

vitdec(ucode,trel,tblen,'cont','unquant',[],zeros(bitsPerPk
decMetric,decState,decInput);

% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
if (pkCount == 1)

numErr = biterr(decoded(tblen+1:end),msg(1:end-tblen));
else

numErr = biterr(decoded,[prevMsg; msg(1:end-tblen)]);
end
totalNumErr = totalNumErr + numErr;
prevMsg = msg(end-tblen+1:end);

end
% Compute the bit error rate
BER = totalNumErr / (pkCount*bitsPerPk-tblen)
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The output is similar to the following:

BER =

0.0050

For additional examples, see “Examples of Convolutional Coding”.

For some commonly used puncture patterns for specific rates and
polynomials, see the last three references below.

See Also convenc, poly2trellis, istrellis, vitsimdemo, viterbisim,
“Convolutional Coding”

References [1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for
Digital Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein,
Data Communications Principles, New York, Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, “Viterbi Decoding for Satellite
and Space Communication,” IEEE Transactions on Communication
Technology, Vol. COM-19, October 1971, pp 835–848.

[4] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft
decision Viterbi decoding,” IEEE Transactions on Communications, vol.
COM-32, No. 3, pp 315–319, Mar. 1984.

[5] Haccoun, D., and G. Begin, “High-rate punctured convolutional
codes for Viterbi and sequential decoding,” IEEE Transactions on
Communications, vol. 37, No. 11, pp 1113–1125, Nov. 1989.

[6] G. Begin, et.al., “Further results on high-rate punctured
convolutional codes for Viterbi and sequential decoding,” IEEE
Transactions on Communications, vol. 38, No. 11, pp 1922–1928, Nov.
1990.
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Purpose Generate white Gaussian noise

Syntax y = wgn(m,n,p)
y = wgn(m,n,p,imp)
y = wgn(m,n,p,imp,state)
y = wgn(...,powertype)
y = wgn(...,outputtype)

Description y = wgn(m,n,p) generates an m-by-n matrix of white Gaussian noise.
p specifies the power of y in decibels relative to a watt. The default
load impedance is 1 ohm.

y = wgn(m,n,p,imp) is the same as the previous syntax, except that
imp specifies the load impedance in ohms.

y = wgn(m,n,p,imp,state) is the same as the previous syntax, except
that wgn first resets the state of the normal random number generator
randn to the integer state.

y = wgn(...,powertype) is the same as the previous syntaxes,
except that the string powertype specifies the units of p. Choices for
powertype are 'dBW', 'dBm', and 'linear'.

y = wgn(...,outputtype) is the same as the previous syntaxes,
except that the string outputtype specifies whether the noise is real
or complex. Choices for outputtype are 'real' and 'complex'. If
outputtype is 'complex', then the real and imaginary parts of y each
have a noise power of p/2.

Note The unit of measure for the output of the wgn function is Volts.
For power calculations, it is assumed that there is a load of 1 Ohm.

Examples To generate a column vector of length 100 containing real white
Gaussian noise of power 0 dBW, use this command:

y1 = wgn(100,1,0);
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To generate a column vector of length 100 containing complex white
Gaussian noise, each component of which has a noise power of 0 dBW,
use this command:

y2 = wgn(100,1,0,'complex');

See Also randn, awgn, “Signal Sources”
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